XT

p=\(\left(\frac{1-\sqrt{x}}{\sqrt{x}-2}-\frac{\sqrt{x}}{1-\sqrt{x}}+\frac{\sqrt{x}+2}{x-3\sqrt{x}+2}\right):\left(\frac{2}{\sqrt{x}-2}+\frac{1-\sqrt{x}}{x-2\sqrt{x}}\right)\)

a) rg p

b) tính gt p biết x=\(6-2\sqrt{5}\)

c) tìm GTLN của \(\frac{p}{\sqrt{x}}\)

H24
8 tháng 2 2017 lúc 18:10

\(\sqrt{x}=y\\ \)

ĐK: \(x\ne0,1,4\Leftrightarrow\left\{\begin{matrix}y>0\\y\ne1\&4\end{matrix}\right.\) ko sửa được y khác 1 &2

\(P=\left(\frac{\left(1-y\right)}{\left(y-2\right)}+\frac{y}{\left(y-1\right)}+\frac{y+2}{\left(y-1\right)\left(y-2\right)}\right):\left(\frac{2}{y-2}-\frac{y-1}{y\left(y-2\right)}\right)\)

\(P=\left(\frac{2y-y^2-1}{\left(y-2\right)\left(y-1\right)}+\frac{y^2-2y}{\left(y-1\right)\left(y-2\right)}+\frac{y+2}{\left(y-1\right)\left(y-2\right)}\right):\left(\frac{2y-y+1}{y\left(y-2\right)}\right)\)

\(P=\left(\frac{y+1}{\left(y-1\right)\left(y-2\right)}\right).\left(\frac{y\left(y-2\right)}{\left(y+1\right)}\right)=\frac{y}{y-1}\)

a) \(P=\frac{\sqrt{x}}{\sqrt{x}-1}\)

b)\(x=6-2\sqrt{5}=5-2\sqrt{5}+1=\left(\sqrt{5}-1\right)^2\)

\(p=\frac{\left(\sqrt{5}-1\right)}{\sqrt{5}-2}=\left(\sqrt{5}-1\right)\left(\sqrt{5}+2\right)=3-\sqrt{5}\)

C)\(\frac{P}{\sqrt{x}}=\frac{1}{\sqrt{x}-1}\ge-1\) tuy nhiên đk: x khác 0=> dấu đẳng thức không xẩy ra (xem lại đề)

Bình luận (1)

Các câu hỏi tương tự
XT
Xem chi tiết
XT
Xem chi tiết
XT
Xem chi tiết
NU
Xem chi tiết
XT
Xem chi tiết
XT
Xem chi tiết
XT
Xem chi tiết
XT
Xem chi tiết
XT
Xem chi tiết