Bài 1: Căn bậc hai

VH

a)\(\sqrt{x^2-2x+4}=2x-2\)
b) \(\sqrt{-x^2+x+4}=x-3\)
c) \(\sqrt{x^2-2x}=\sqrt{2-3x}\)
d) \(\sqrt{x-3}-2\sqrt{x^2-9}=0\)

AH
18 tháng 9 2020 lúc 22:42

Lời giải:

a) ĐKXĐ: $x\in\mathbb{R}$

\(\sqrt{x^2-2x+4}=2x-2\Leftrightarrow \left\{\begin{matrix} 2x-2\geq 0\\ x^2-2x+4=(2x-2)^2\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x\geq 1\\ 3x^2-6x=0\end{matrix}\right.\Rightarrow x=2\)

b) ĐKXĐ: $-x^2+x+4\geq 0$

\(\sqrt{-x^2+x+4}=x-3\Leftrightarrow \left\{\begin{matrix} x-3\geq 0\\ -x^2+x+4=(x-3)^2\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x\geq 3\\ 2x^2-7x+5=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 3\\ (2x-5)(x-1)=0\end{matrix}\right.\) (không thỏa mãn)

Vậy pt vô nghiệm

c) ĐK: $x\leq 0$

PT $\Rightarrow x^2-2x=2-3x$

$\Leftrightarrow x^2+x-2=0$

$\Leftrightarrow (x+2)(x-1)=0$

Vì $x\leq 0$ nên $x=-2$ là nghiệm duy nhất của pt.

d) ĐK: $x\geq 3$

PT $\Leftrightarrow \sqrt{x-3}-2\sqrt{(x-3)(x+3)}=0$

$\Leftrightarrow \sqrt{x-3}(1-2\sqrt{x+3})=0$

$\Rightarrow \sqrt{x-3}=0$ hoặc $1-2\sqrt{x+3}=0$

Nếu $\sqrt{x-3}=0\Rightarrow x=3$ (thỏa mãn)

Nếu $1-2\sqrt{x+3}=0\Rightarrow x=\frac{-11}{4}< 3$ (không thỏa ĐKXĐ)

Vậy ...........

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
MG
Xem chi tiết
BH
Xem chi tiết
NC
Xem chi tiết
DA
Xem chi tiết
HN
Xem chi tiết
PA
Xem chi tiết
NC
Xem chi tiết
HL
Xem chi tiết