Bài 2: Căn thức bậc hai và hằng đẳng thức căn bậc hai của bình phương

AN

\(a.\sqrt{x-2}-3\sqrt{x^2-4}=0\)

b.\(\sqrt{1-x}+\sqrt{4-4x}-\dfrac{1}{3}\sqrt{16-16x}+5=0\)

LP
21 tháng 9 2018 lúc 20:30

a, \(\sqrt{x+2}-3\sqrt{x^2-4}\) = 0

\(\sqrt{x+2}\) = \(3\sqrt{\left(x-2\right)\left(x+2\right)}\)

\(3\sqrt{x-2}\) = 0

\(\sqrt{x-2}\) = 0

⇔ x - 2 = 0

⇔ x = 2

b, \(\sqrt{1-x}+\sqrt{4-4x}-\dfrac{1}{3}\sqrt{16-16x}+5=0\)

\(\sqrt{1-x}+\sqrt{4\left(1-x\right)}-\dfrac{1}{3}\sqrt{16\left(1-x\right)}+5=0\)

\(\sqrt{1-x}+2\sqrt{\left(1-x\right)}-\dfrac{4}{3}\sqrt{\left(1-x\right)}+5=0\)

\(\left(1+2-\dfrac{4}{3}\right)\sqrt{1-x}=-5\)

\(\dfrac{5}{3}\sqrt{1-x}=-5\)

\(\sqrt{1-x}=-3\) ( vô lí )

⇒ Phương trình vô nghiệm

Bình luận (0)
H24
21 tháng 9 2018 lúc 20:42

a) \(ĐKXĐ:\left[{}\begin{matrix}x\ge2\\x\le-2\end{matrix}\right.\)

\(\sqrt{x-2}-3\sqrt{x^2-4}=0\)

\(\Leftrightarrow\sqrt{x-2}=3\sqrt{x^2-4}\)

\(\Leftrightarrow x-2=9\left(x^2-4\right)\)

\(\Leftrightarrow x-2=9x^2-36\)

\(\Leftrightarrow9x^2-x-34=0\)

\(\Leftrightarrow9x^2-18x+17x-34=0\)

\(\Leftrightarrow9x\left(x-2\right)+17\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(9x+17\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\9x+17=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\left(tm\right)\\x=-\dfrac{17}{9}\left(Ktm\right)\end{matrix}\right.\)

Vây: x = 2

b)\(ĐKXĐ:x\le1\)

\(\sqrt{1-x}+\sqrt{4-4x}-\dfrac{1}{3}\sqrt{16-16x}+5=0\)

\(\Leftrightarrow\sqrt{1-x}+\sqrt{4\left(1-x\right)}-\dfrac{1}{3}\sqrt{16\left(1-x\right)}+5=0\)

\(\Leftrightarrow\sqrt{1-x}+2\sqrt{\left(1-x\right)}-\dfrac{4}{3}\sqrt{\left(1-x\right)}+5=0\)

\(\Leftrightarrow\sqrt{1-x}\left(1+2-\dfrac{4}{3}\right)+5=0\)

\(\Leftrightarrow\dfrac{5}{3}\sqrt{1-x}+5=0\)

\(\Leftrightarrow\dfrac{5}{3}\sqrt{x-1}=-5\)

\(\Leftrightarrow\sqrt{1-x}=-3\left(vn\right)\)

Vậy: \(x=\varnothing\)

Sai thì thôi nhâ

Bình luận (0)

Các câu hỏi tương tự
PN
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
LT
Xem chi tiết
LN
Xem chi tiết
YS
Xem chi tiết
NL
Xem chi tiết
NL
Xem chi tiết
NH
Xem chi tiết