Bài 3: Nhị thức Niu-tơn

TT

Ån-1+\(A_N^{N-2}\)-3\(C_n^{n-3}\)=5n2+26n+684

NL
23 tháng 12 2022 lúc 23:31

ĐK: \(n\ge3\)

\(n!+\dfrac{n!}{2}-\dfrac{n!}{\left(n-3\right)!.2}=5n^2+26n+684\)

\(\Leftrightarrow\dfrac{3}{2}n!=\dfrac{n\left(n-1\right)\left(n-2\right)}{2}+5n^2+26n+684\)

\(\Leftrightarrow3.n!-n^3-7n^2-54n-1368=0\) (1)

- Với \(n=\left\{3;4;5\right\}\) không thỏa mãn

- Với \(n=6\) thỏa mãn

- Với \(n>6\), ta có:

\(3.n!>3.n\left(n-1\right)\left(n-2\right)\left(n-3\right)\left(n-4\right)\left(n-5\right)>3n\left(n-1\right)\left(n-2\right).3.2.1\)

\(\Rightarrow3.n!>18n\left(n-1\right)\left(n-2\right)\)

\(\Rightarrow3.n!-n^3-7n^2-54n-1368>18n\left(n-1\right)\left(n-2\right)-n^3-7n^2-54n-1368\)

\(=\left(n-6\right)\left(17n^2+41n+228\right)>0\)

\(\Rightarrow\) (1) vô nghiệm 

Vậy \(n=6\) là giá trị duy nhất thỏa mãn

Bình luận (0)

Các câu hỏi tương tự
TP
Xem chi tiết
LN
Xem chi tiết
KM
Xem chi tiết
LN
Xem chi tiết
TD
Xem chi tiết
PA
Xem chi tiết
LL
Xem chi tiết
NM
Xem chi tiết