Bài 3: Nhị thức Niu-tơn

LN

tìm các số hạng trong các khai triển sau:

a, số hạng thứ 13 trong kt \(\left(\frac{1}{\sqrt[3]{x^2}}+\sqrt[4]{x^3}\right)^{17}\), \(x\ne0\)

b, số hạng thứ 3 trong kt: \(\left(2+x^2\right)^n\) biết rằng : \(3^nC^0_n-3^{n-1}C_n+3^{n-2}C_n^2+...+\left(-1\right)C_n^n\)

NL
5 tháng 11 2019 lúc 23:17

\(\left(x^{-\frac{2}{3}}+x^{\frac{3}{4}}\right)^{17}=\sum\limits^{17}_{k=0}C_{17}^k\left(x^{-\frac{2}{3}}\right)^k\left(x^{\frac{3}{4}}\right)^{17-k}=\sum\limits^{17}_{k=0}C_{17}^kx^{\frac{51}{4}-\frac{17}{12}k}\)

Số hạng thứ 13 \(\Rightarrow k=12\) là: \(C_{17}^{12}x^{-\frac{17}{4}}\)

b/ Xét khai triển:

\(\left(3-x\right)^n=C_n^03^n+C_n^13^{n-1}\left(-x\right)^1+C_n^23^{n-2}\left(-x\right)^2+...+C_n^n\left(-x\right)^n\)

Cho \(x=1\) ta được:

\(2^n=3^nC_n^0-3^{n-1}C_n^1+3^{n-2}C_n^2+...+\left(-1\right)^nC_n^n\)

À, đến đây mới thấy đề thiếu, biết rằng cái kia làm sao hả bạn?

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
LN
Xem chi tiết
H24
Xem chi tiết
SB
Xem chi tiết
TK
Xem chi tiết
H24
Xem chi tiết
MA
Xem chi tiết
LN
Xem chi tiết
TD
Xem chi tiết
LL
Xem chi tiết