Bài 1: Căn bậc hai

HT

A=\(\left(\frac{x-5\sqrt{x}}{x-25}-1\right):\left(\frac{25-x}{x+2\sqrt{x}-15}-\frac{\sqrt{x}+3}{\sqrt{x}+5}+\frac{\sqrt{x}-5}{\sqrt{x-3}}\right)\)
a,Rút gọn A
b,Tính giá trị của A khi x=29-12\(\sqrt{5}\)

H24
1 tháng 9 2019 lúc 8:52

a) sửa đề bài luôn nha

A\(=\left(\frac{x-5\sqrt{x}}{x-25}-1\right):\left(\frac{25-x}{x+2\sqrt{x}-15}-\frac{\sqrt{x}+3}{\sqrt{x}+5}+\frac{\sqrt{x}-5}{\sqrt{x}-3}\right)\)

\(=\left(\frac{x-5\sqrt{x}-\left(x-25\right)}{x-25}\right):\left(\frac{25-x}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}-\frac{\sqrt{x}+3}{\sqrt{x}+5}+\frac{\sqrt{x}-5}{\sqrt{x}-3}\right)\)

\(=\frac{x-5\sqrt{x}-x+25}{x-25}:\frac{25-x-\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)+\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}\)

\(=\frac{-5\left(\sqrt{x}-5\right)}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}:\frac{25-x-\left(x-9\right)+x-25}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}\)

\(=\frac{-5\left(\sqrt{x}-5\right)}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}:\frac{25-x-\left(x-9\right)+x-25}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}\)

\(=\frac{-5}{\sqrt{x}+5}:\frac{25-x-x+9+x-25}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}\)

\(=\frac{-5}{\sqrt{x}+5}:\frac{25-x-x+9+x-25}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}\)

\(=\frac{-5}{\sqrt{x}+5}:\frac{9-x}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}\)

\(=\frac{5}{\sqrt{x}+5}.\frac{\left(\sqrt{x}+5\right)\left(\sqrt{x}-3\right)}{x-9}\)

\(=\frac{5\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{5}{\sqrt{x}+3}\)

Bình luận (0)
H24
1 tháng 9 2019 lúc 9:00

\(đk:x\ne25;x\ne9\)

thay \(x=29-12\sqrt{5}=>\sqrt{x}=\sqrt{29-12\sqrt{5}}=\sqrt{\left(2\sqrt{5}\right)^2-12\sqrt{5}+3^2}=\sqrt{\left(2\sqrt{5}-3\right)^2}=\left|2\sqrt{5}-3\right|=2\sqrt{5}-3\)ta có A=\(\frac{5}{2\sqrt{5}-3+3}=\frac{5}{2\sqrt{5}}=\frac{\sqrt{5}}{2}\)

Vậy ...

Bình luận (0)

Các câu hỏi tương tự
TT
Xem chi tiết
H24
Xem chi tiết
NT
Xem chi tiết
NL
Xem chi tiết
HA
Xem chi tiết
TL
Xem chi tiết
CQ
Xem chi tiết
H24
Xem chi tiết
GJ
Xem chi tiết