a: ĐKXĐ: a>0; a<>2; a<>1
b: \(A=\left(\dfrac{a+\sqrt{a}+1-a+\sqrt{a}-1}{\sqrt{a}}\right)\cdot\dfrac{a-2}{a+2}\)
\(=2\cdot\dfrac{a-2}{a+2}=\dfrac{2a-4}{a+2}\)
c: Để A=3 thì 2a-4=3a+6
=>3a+6=2a-4
=>a=-10
a: ĐKXĐ: a>0; a<>2; a<>1
b: \(A=\left(\dfrac{a+\sqrt{a}+1-a+\sqrt{a}-1}{\sqrt{a}}\right)\cdot\dfrac{a-2}{a+2}\)
\(=2\cdot\dfrac{a-2}{a+2}=\dfrac{2a-4}{a+2}\)
c: Để A=3 thì 2a-4=3a+6
=>3a+6=2a-4
=>a=-10
Cho biểu thức C =\([1:\left(1-\dfrac{\sqrt{a}}{1+\sqrt{a}}\right)].[\dfrac{1}{\sqrt{a}-1}-\dfrac{2\sqrt{a}}{\left(a+1\right)\left(\sqrt{a-1}\right)}]\)
a) Tìm ĐKXĐ của C
b) Rút gọn C
c) Với giá trị nào của a thì C nhận giá trị nguyên
Cho 2 biểu thức M = \(3\sqrt{3}-\sqrt{12}-\sqrt{\left(\sqrt{3}-1\right)^2}\)
N = \(\left(\dfrac{1}{a-\sqrt{a}}+\dfrac{1}{\sqrt{a}-1}\right):\dfrac{\sqrt{a}+1}{a-2\sqrt{a}+1}\) với a>0 và a≠1
a, Rút gọn biểu thức M
b, Tìm các giá trị của a để giá trị của biểu thức M bằng 2 lần giá trị của biểu thức N
Cho biểu thức
A =\(\left(\dfrac{\sqrt{a}}{\sqrt{a}-2}+\dfrac{\sqrt{a}}{\sqrt{a}-2}\right).\dfrac{a-4}{\sqrt{4a}}\) với a ≥0,a≠4
a) Rút gọn biểu thức A
b) Tìm giá trị của a để A -2 < 0
c) Tìm giá trị của a nguyên để biểu thức \(\dfrac{4}{A+1}\)
Câu 4: Cho biểu thức: \(A=\left(\dfrac{1}{\sqrt{x}-3}+\dfrac{1}{\sqrt{x}+3}\right)\left(1-\dfrac{3}{\sqrt{x}}\right)\)
a. Tìm điều kiện xác định của biểu thức A
b. Rút gọn A
c. Tìm x để giá trị biểu thức A > \(\dfrac{2}{5}\)
Bài 1: Cho biểu thức:
P = \(\dfrac{a\sqrt{a}-1}{a-\sqrt{a}}-\dfrac{a\sqrt{a}+1}{a+\sqrt{a}}+\left(\sqrt{a}-\dfrac{1}{\sqrt{a}}\right).\left(\dfrac{3\sqrt{a}}{\sqrt{a}-1}-\dfrac{2+\sqrt{a}}{\sqrt{a}+1}\right)\)
a) Tìm ĐKXĐ và rút gọn P
b) Với giá trị nào của a thì P = \(\sqrt{a}+7\)
c) CMR: Với mọi giá trị thích hợp của a thì P > 6
rút gọn biểu thức a
A= \(\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)
a/ rút gọn A
b/ tìm giá trị để A dương
M=\(\dfrac{a+1}{\sqrt{a}}\)+\(\dfrac{a\sqrt{a}-1}{a-\sqrt{a}}\)+\(\dfrac{a^2-a\sqrt{a}+\sqrt{a}-1}{\sqrt{a}-a\sqrt{a}}\)(với a>0,a khác 1)
a) Chứng minh rằng M>4
b)Với những giá trị nào của a thì biểu thức N=\(\dfrac{6}{M}\) nhận giá trị nguyên
12. Cho biểu thức \(P=\left(\dfrac{1}{\sqrt{x}+2}-\dfrac{1}{\sqrt{x}-2}\right):\left(\dfrac{\sqrt{x}-3}{4-x}\right)\)
a. Rút gọn P
b. Với giá trị nào của x thì biểu thức P > -1
với a > 1, cho biểu thức \(P=\left(\dfrac{2}{\sqrt{a+1}}+\sqrt{a-1}\right):\left(\dfrac{2}{\sqrt{a^2-1}}+1\right)\)
rút gọn biểu thức P và tim giá trị của a để P=2
Câu 9: Cho biểu thức \(M=\left(\dfrac{\sqrt{x}}{\sqrt{x-2}}+\dfrac{\sqrt{x}}{\sqrt{x+2}}\right)\) : \(\dfrac{\sqrt{4x}}{x-4}\)
a. Với giá trị nào của x thì giá trị của M được xác định ?
b. Rút gọn M. Tìm x để M > 3