NN
\(A=\left(\dfrac{1-x^2-11}{x+1}\right).\left(\dfrac{3+x}{x-3}-\dfrac{36}{9-x^2}-\dfrac{x-3}{x+3}\right)\)





a)rút gọn biểu thức A

 

b) tính giá trị của A biết \(2x^2-x=0\)
NT
30 tháng 7 2024 lúc 20:33

a:

ĐKXĐ: \(x\notin\left\{-1;3;-3\right\}\)

 \(A=\left(\dfrac{1-x^2-11}{x+1}\right)\cdot\left(\dfrac{3+x}{x-3}-\dfrac{36}{9-x^2}-\dfrac{x-3}{x+3}\right)\)

\(=\left(\dfrac{-x^2-10}{x+1}\right)\cdot\left(\dfrac{\left(x+3\right)^2+36-\left(x-3\right)^2}{\left(x-3\right)\left(x+3\right)}\right)\)

\(=\dfrac{-x^2-10}{x+1}\cdot\dfrac{x^2+6x+9+36-x^2+6x-9}{\left(x-3\right)\left(x+3\right)}\)

\(=\dfrac{-x^2-10}{x+1}\cdot\dfrac{12x+36}{\left(x-3\right)\left(x+3\right)}=\dfrac{12\left(-x^2-10\right)}{\left(x-3\right)\left(x+1\right)}\)

b: \(2x^2-x=0\)

=>x(2x-1)=0

=>\(\left[{}\begin{matrix}x=0\left(nhận\right)\\x=\dfrac{1}{2}\left(nhận\right)\end{matrix}\right.\)

Khi x=0 thì \(A=\dfrac{12\left(-0^2-10\right)}{\left(0-3\right)\left(0+1\right)}=\dfrac{12\left(-10\right)}{\left(-3\right)\cdot1}=\dfrac{120}{3}=40\)

Khi x=1/2 thì \(A=\dfrac{12\left(-\dfrac{1}{4}-10\right)}{\left(\dfrac{1}{2}-3\right)\left(\dfrac{1}{2}+1\right)}=\dfrac{12\cdot\dfrac{-41}{4}}{\dfrac{-5}{2}\cdot\dfrac{3}{2}}=-41\cdot\dfrac{3}{-\dfrac{15}{4}}=\dfrac{164}{5}\)

Bình luận (0)
H9
30 tháng 7 2024 lúc 20:33

a) 

\(A=\left(\dfrac{1-x^2-11}{x+1}\right)\cdot\left(\dfrac{3+x}{x-3}-\dfrac{36}{9-x^2}-\dfrac{x-3}{x+3}\right)\left(x\notin\left\{-1;3;-3\right\}\right)\\ =\dfrac{-x^2-10}{x+1}\cdot\left[\dfrac{x+3}{x-3}+\dfrac{36}{x^2-9}-\dfrac{x-3}{x+3}\right]\\ =\dfrac{-x^2-10}{x+1}\cdot\left[\dfrac{\left(x+3\right)^2}{\left(x+3\right)\left(x-3\right)}+\dfrac{36}{\left(x+3\right)\left(x-3\right)}-\dfrac{\left(x-3\right)^2}{\left(x+3\right)\left(x-3\right)}\right]\\ =\dfrac{-x^2-10}{x+1}\cdot\dfrac{x^2+6x+9+36-x^2+6x-9}{\left(x+3\right)\left(x-3\right)}\\ =\dfrac{12x+36}{\left(x+3\right)\left(x-3\right)}\cdot\dfrac{-x^2-10}{x+1}\\ =\dfrac{12\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}\cdot\dfrac{-x^2-10}{x+1}\\ =\dfrac{12}{x-3}\cdot\dfrac{-x^2-10}{x+1}\\ =\dfrac{-12x^2-120}{x^2-2x-3}\)

b) Ta có: \(2x^2-x=0< =>x\left(2x-1\right)=0< =>\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\end{matrix}\right.\left(tm\right)\)

Thay x = 0 vào A ta có:

\(A=\dfrac{-12\cdot0^2-120}{0^2-2\cdot0-3}=\dfrac{-120}{-3}=40\)

Thay `x=1/2` vào A ta có:

\(A=\dfrac{-12\cdot\left(\dfrac{1}{2}\right)^2-120}{\left(\dfrac{1}{2}\right)^2-2\cdot\dfrac{1}{2}-3}=\dfrac{164}{5}\)

Bình luận (0)

Các câu hỏi tương tự
HN
Xem chi tiết
ND
Xem chi tiết
H24
Xem chi tiết
TL
Xem chi tiết
PN
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
NB
Xem chi tiết
MH
Xem chi tiết
TL
Xem chi tiết