Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Ôn tập chương III

H24

A=(\(\dfrac{x\sqrt{x}+1}{x-1}-\dfrac{x-1}{\sqrt{x}-1}\)):(\(\sqrt{x}+\dfrac{\sqrt{x}}{\sqrt{x}-1}\))

MP
22 tháng 8 2018 lúc 15:26

điều kiện xác định : \(x\ge0;x\ne1\)

ta có : \(A=\left(\dfrac{x\sqrt{x}+1}{x-1}-\dfrac{x-1}{\sqrt{x}-1}\right):\left(\sqrt{x}+\dfrac{\sqrt{x}}{\sqrt{x}-1}\right)\)

\(\Leftrightarrow A=\left(\dfrac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\dfrac{x-1}{\sqrt{x}-1}\right):\left(\dfrac{\sqrt{x}+x-\sqrt{x}}{\sqrt{x}-1}\right)\) \(\Leftrightarrow A=\left(\dfrac{x-\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{x-1}{\sqrt{x}-1}\right):\left(\dfrac{x}{\sqrt{x}-1}\right)\)

\(\Leftrightarrow A=\left(\dfrac{x-\sqrt{x}+1-x+1}{\sqrt{x}-1}\right):\left(\dfrac{x}{\sqrt{x}-1}\right)=\dfrac{2-\sqrt{x}}{\sqrt{x}-1}.\dfrac{\sqrt{x}-1}{x}=\dfrac{2-\sqrt{x}}{x}\)

Bình luận (0)

Các câu hỏi tương tự
NM
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
TT
Xem chi tiết
JP
Xem chi tiết
TL
Xem chi tiết
SK
Xem chi tiết