H24

\(A=\dfrac{x+\sqrt{x}+1}{\sqrt{x}-4}\) và \(B=\dfrac{\sqrt{x}-1}{\sqrt{x}-2}+\dfrac{5\sqrt{x}-8}{2\sqrt{x}-x}\)

1. Rút gọn B

2. Cho P=A.B. So sánh P với 2

NT
5 tháng 4 2022 lúc 21:49

1: \(B=\dfrac{\sqrt{x}-1}{\sqrt{x}-2}-\dfrac{5\sqrt{x}-8}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(=\dfrac{x-\sqrt{x}-5\sqrt{x}+8}{\sqrt{x}\left(\sqrt{x}-2\right)}=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-4\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(=\dfrac{\sqrt{x}-4}{\sqrt{x}}\)

2: \(P=A\cdot B=\dfrac{x+\sqrt{x}+1}{\sqrt{x}}\)

\(\Leftrightarrow P-2=\dfrac{x-\sqrt{x}+1}{\sqrt{x}}>0\)

=>P>2

Bình luận (0)

Các câu hỏi tương tự
MB
Xem chi tiết
MB
Xem chi tiết
MB
Xem chi tiết
MB
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
TA
Xem chi tiết
H24
Xem chi tiết
LP
Xem chi tiết