\(A=\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-1}-\dfrac{\sqrt{a}-1}{\sqrt{a}+1}+4\sqrt{a}\right)\left(\sqrt{a}-\dfrac{1}{\sqrt{a}}\right)\)
\(=\left(\dfrac{\left(\sqrt{a}+1\right)\left(\sqrt{a}+1\right)-\left(\sqrt{a}-1\right)\left(\sqrt{a}-1\right)+4\sqrt{a}\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right)\left(\dfrac{a-1}{\sqrt{a}}\right)\)
\(=\left(\dfrac{a+2\sqrt{a}+1-a+2\sqrt{a}-1+4a\sqrt{a}-4\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right)\left(\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\sqrt{a}}\right)\)
\(=\dfrac{4a\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}.\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\sqrt{a}}\)
\(=\dfrac{4a\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}.\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\sqrt{a}}\)
\(=4a\)
Câu b : Thay \(a=\dfrac{\sqrt{6}}{2+\sqrt{6}}\) vào A ta được :
\(A=4.\dfrac{\sqrt{6}}{2+\sqrt{6}}=\dfrac{4\sqrt{6}}{2+\sqrt{6}}=12-4\sqrt{6}\)