\(C=A\cdot B=\dfrac{2\sqrt{x}-3}{\sqrt{x}-3}\)
Để C>=1 thì C-1>=0
\(\Leftrightarrow\dfrac{2\sqrt{x}-3-\sqrt{x}+3}{\sqrt{x}-3}>=0\)
\(\Leftrightarrow\sqrt{x}-3>0\)
hay x>9
\(C=A\cdot B=\dfrac{2\sqrt{x}-3}{\sqrt{x}-3}\)
Để C>=1 thì C-1>=0
\(\Leftrightarrow\dfrac{2\sqrt{x}-3-\sqrt{x}+3}{\sqrt{x}-3}>=0\)
\(\Leftrightarrow\sqrt{x}-3>0\)
hay x>9
A=\(\dfrac{3\sqrt{x}-6}{x-2\sqrt{x}}+\dfrac{\sqrt{x}-3}{\sqrt{x}}-\dfrac{1}{2-\sqrt{x}}\) và B=\(\dfrac{\sqrt{x}-2}{\sqrt{x}+9}\)
Cho P=A.B. Tìm số nguyên x để \(\sqrt{P}< \dfrac{1}{3}\)
Cho biểu thức A = \(\dfrac{\sqrt{x}-2}{\sqrt{x}}\) và B = \(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{2x}{x-9}\) Đk: x>0, x≠9
a, Rút gọn B
b, Đặt P = A.B. Tìm giá trị nguyên nhỏ nhất của x để |P| > P.
a) Tính giá trị biểu thức A=\(\dfrac{\sqrt{x}+2}{\sqrt{x}+1}\) tại x=36
b) Rút gọn B= \(\dfrac{\sqrt{x}-2}{\sqrt{x}}+\dfrac{4}{x+2\sqrt{x}}\)
c) Tìm x để P=A.B < \(\dfrac{3}{4}\)
1/ Cho hai biểu thức A=\(\dfrac{\sqrt{x}-2}{\sqrt{x}}\) và B=\(\dfrac{2\sqrt{x}}{\sqrt{x}+3}\)+ \(\dfrac{\sqrt{x}}{\sqrt{x}-3}\)-\(\dfrac{2x}{x-9}\) với x>0 , x≠9
a) Rút gọn biểu thức B
b) Tìm các giá trị nguyên của x để P<0 với P=A.B
Cho 2 biểu thức A= \(\dfrac{7}{\sqrt{x}+8}\) và B=\(\dfrac{\sqrt{x}}{\sqrt{x}-3}+\dfrac{2\sqrt{x}-24}{x-9}\)
a) Chứng minh B= \(\dfrac{\sqrt{x}+8}{\sqrt{x}+3}\)
b) Tìm GTLN của B
c) Tìm số nguyên x để biểu thức P = A.B có giá trị là số nguyên.
A=\(\dfrac{\sqrt{x}+2}{\sqrt{x}+1}\) và B=\(\dfrac{4}{\sqrt{x}+2}\) Tìm các giá trị x là số chẵn để A.B>1
\(C=\left(\dfrac{2\sqrt{x}}{2x-5\sqrt{x}+3}-\dfrac{5}{2\sqrt{x}-3}\right)\div\left(3+\dfrac{2}{1-\sqrt{x}}\right)\)
a) Rút gọn C
b) Tính C với \(x=\dfrac{2}{2-\sqrt{3}}\)
c) Tìm x để C= –1
d) Tìm x để C > 0
e) So sánh C’ với –2
f) Tìm GRNN của C’ với C’=\(\dfrac{1}{C}\times\dfrac{1}{\sqrt{x}+1}\)
i)Tìm \(x\in Z\) để \(C'\in Z\) g) Tìm m để pt C’.m = –1 có nghiệm
Cho biểu thức:
\(A=\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}+1}{\sqrt{x}-3}+\dfrac{3-11\sqrt{x}}{9-x}\)
a) Rút gọn biểu thức A.
b) Tìm tất cả các giá trị của x để \(A\ge0\).
A=\(\dfrac{3+2\sqrt{3}}{\sqrt{3}}\)-\(\dfrac{1}{\sqrt{3}-\sqrt{2}}\)+\(\dfrac{2+\sqrt{2}}{\sqrt{2}+1}\)
B=\(\dfrac{\sqrt{x}}{\sqrt{x}+3}\)+\(\dfrac{2\sqrt{x}}{\sqrt{x}-3}\)-\(\dfrac{3x+9}{x-9}\)với x≥0;x≠9
a. Rút gọn biểu thức A và B
b. Tìm x để một phần ba giá trị của A bằng giá trị của biểu thức B
Cho \(P=\left(\dfrac{3}{\sqrt{x}-1}+\dfrac{\sqrt{x}-3}{x-1}\right):\left(\dfrac{x+2}{x+\sqrt{x}-2}-\dfrac{\sqrt{x}}{\sqrt{x}+2}\right)\)
a, Rút gọn P.
b, Tìm x để P=\(\sqrt{x}-1\).
c, Tìm xϵZ để PϵZ.