Ôn tập Tam giác

PV

AC1/Cho ΔABC = ΔDEF. Tính chu vi mỗi Δ biết AB=4 cm, BC=6cm, DF=5cm

2/ Cho ΔABC có AB<AC. Trên ÁC lấy điểm D sao cho AD=AB. Gọi M là trug điểm BD

a/ C/m ΔABM=ΔADM

b/ C/m AM⊥BD

c/ Tia AM cắt BC tại K. C/m ΔABK=ΔADK

d/ Trên tia đối của tia BA lấy điểm F sao cho BF=DC. C/m 3 điểm F,K,C thẳng hàng.

3/ Cho ΔABC vuông tại A, góc B=60 độ. Trên tia BA lấy điểm E sao cho BE=BC. Vẽ BI là phân giác góc B, I thuộc AC

a/. C/m tam giác BEC đều

b/ IE= IC

c/ EI⊥BC

NV
5 tháng 3 2018 lúc 22:20

Bài 2 :

A B D C M K F

a) Xét \(\Delta ABM,\Delta ADM\) có :

\(AB=AD\left(gt\right)\)

\(AM:chung\)

\(BM=DM\) (M là trung điểm của BD)

=> \(\Delta ABM=\Delta ADM\left(c.c.c\right)\)

b) Từ \(\Delta ABM=\Delta ADM\) (cmt - câu a) suy ra :

\(\widehat{AMB}=\widehat{AMD}\) (2 góc tương ứng)

Mà : \(\widehat{AMB}+\widehat{AMD}=180^o\left(Kềbù\right)\)

=> \(\widehat{AMB}=\widehat{AMD}=\dfrac{180^o}{2}=90^o\)

=> \(AM\perp BD\rightarrowđpcm\)

c) Xét \(\Delta ABK,\Delta ADK\) có :

AB = AD (gt)

\(\widehat{BAK}=\widehat{DAK}\) (\(\Delta ABM=\Delta ADM\))

AK :Chung

=> \(\Delta ABK=\Delta ADK\left(c.g.c\right)\)

d) Ta có : \(\left\{{}\begin{matrix}\widehat{ABK}+\widehat{FBK}=180^{^O}\\\widehat{ADK}+\widehat{CDK}=180^{^O}\end{matrix}\right.\left(Kềbù\right)\)

Lại có : \(\widehat{ABK}=\widehat{ADK}\) (do \(\Delta ABK=\Delta ADK\left(c.g.c\right)\)

Nên : \(180^o-\widehat{ABK}=180^o-\widehat{ADK}\)

\(\Leftrightarrow\widehat{FBK}=\widehat{CDK}\)

Xét \(\Delta BFK,\Delta DCK\) có :

\(BF=CD\left(gt\right)\)

\(\widehat{FBK}=\widehat{CDK}\left(cmt\right)\)

\(BK=DK\) (\(\Delta ABK=\Delta ADK\left(c.g.c\right)\))

=> \(\Delta BFK=\Delta DCK\left(c.g.c\right)\)

=> FK = DK (2 cạnh tương ứng)

=> K là trung điểm của FD

=> F, D, K thẳng hàng.

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
SK
Xem chi tiết
MT
Xem chi tiết
GA
Xem chi tiết
HH
Xem chi tiết
NT
Xem chi tiết
PH
Xem chi tiết
PK
Xem chi tiết
LT
Xem chi tiết