a: ĐKXĐ: \(x\notin\left\{0;-1;1\right\}\)
b: \(P=\left(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}+\dfrac{x^2-3x}{x^2-1}\right)\cdot\dfrac{x+4}{x}\)
\(=\dfrac{\left(x+1\right)^2-\left(x-1\right)^2+x^2-3x}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x+4}{x}\)
\(=\dfrac{x^2+2x+1-x^2+2x-1+x^2-3x}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x+4}{x}\)
\(=\dfrac{x^2+x}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x+4}{x}=\dfrac{x+4}{x-1}\)
c: Để P là số nguyên thì \(x+4⋮x-1\)
=>\(x-1+5⋮x-1\)
=>\(5⋮x-1\)
=>\(x-1\in\left\{1;-1;5;-5\right\}\)
=>\(x\in\left\{2;0;6;-4\right\}\)
Kết hợp ĐKXĐ, ta được: \(x\in\left\{2;6;-4\right\}\)