Ôn tập chương 1: Căn bậc hai. Căn bậc ba

H24

a, tính Max A=\(\sqrt{x-1}+\sqrt{9-x}\)

b,Tìm tất cả các số hữu tỉ x để A=\(\dfrac{3\sqrt{x}+11}{\sqrt{x}+2}\)là số nguyên

AH
7 tháng 8 2021 lúc 18:56

Lời giải:
a.

Áp dụng BĐT Bunhiacopxky:

$A^2=(\sqrt{x-1}+\sqrt{9-x})^2\leq (x-1+9-x)(1+1)=16$

$\Rightarrow A\leq 4$

Vậy $A_{\max}=4$. Giá trị này đạt tại $x=5$

b.

$A=\frac{3(\sqrt{x}+2)+5}{\sqrt{x}+2}=3+\frac{5}{\sqrt{x}+2}$

Để $A$ nguyên thì $\frac{5}{\sqrt{x}+2}=m$ với $m$ nguyên dương

$\Leftrightarrow \sqrt{x}+2=\frac{5}{m}$

$\sqrt{x}=\frac{5-2m}{m}$

Vì $\sqrt{x}\geq 0$ nên $\frac{5-2m}{m}\geq 0$

Mà $m$ nguyên dương nên $5-2m\geq 0$

$\Leftrightarrow m\leq 2,5$. 

$\Rightarrow m=1; 2$

$\Rightarrow x=9; x=\frac{1}{4}$

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
NT
Xem chi tiết
DL
Xem chi tiết
VL
Xem chi tiết
AL
Xem chi tiết
H24
Xem chi tiết
AH
Xem chi tiết
VL
Xem chi tiết
CA
Xem chi tiết