ĐKXĐ: \(x\notin\left\{0;2;-2\right\}\)
a: \(P=\dfrac{x^2+2x}{x^2-4x+4}:\left(\dfrac{x+2}{x}-\dfrac{1}{2-x}+\dfrac{6-x^2}{x^2-2x}\right)\)
\(=\dfrac{x\left(x+2\right)}{\left(x-2\right)^2}:\left(\dfrac{x+2}{x}+\dfrac{1}{x-2}+\dfrac{6-x^2}{x\left(x-2\right)}\right)\)
\(=\dfrac{x\left(x+2\right)}{\left(x-2\right)^2}:\dfrac{\left(x+2\right)\left(x-2\right)+x+6-x^2}{x\left(x-2\right)}\)
\(=\dfrac{x\cdot\left(x+2\right)}{\left(x-2\right)^2}\cdot\dfrac{x\left(x-2\right)}{x^2-4+x+6-x^2}\)
\(=\dfrac{x^2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{x^2}{x-2}\)
b: |2x+1|=0
=>2x+1=0
=>2x=-1
=>\(x=-\dfrac{1}{2}\left(nhận\right)\)
Thay x=-1/2 vào P, ta được:
\(P=\dfrac{\left(-\dfrac{1}{2}\right)^2}{-\dfrac{1}{2}-2}=\dfrac{1}{4}:\dfrac{-5}{2}=\dfrac{1}{4}\cdot\dfrac{-2}{5}=\dfrac{-2}{20}=-\dfrac{1}{10}\)
c: Để P là số nguyên âm thì \(\left\{{}\begin{matrix}P< 0\\x^2⋮x-2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x-2< 0\\x^2-4+4⋮x-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-2< 0\\4⋮x-2\end{matrix}\right.\)
=>\(x-2\in\left\{-1;-2;-4\right\}\)
=>\(x\in\left\{1;0;-2\right\}\)
Kết hợp ĐKXĐ, ta được: x=1