c. \(\frac{2}{\sqrt{5}+\sqrt{3}}-\frac{3-\sqrt{15}}{\sqrt{5}-\sqrt{3}}\)
= \(\frac{2\left(\sqrt{5}-\sqrt{3}\right)}{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}-\frac{\left(3-\sqrt{15}\right)\left(\sqrt{5}+\sqrt{3}\right)}{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}\)
= \(\frac{2\sqrt{5}-2\sqrt{3}}{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}-\frac{3\sqrt{5}+3\sqrt{3}-5\sqrt{3}+3\sqrt{5}}{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)}\)
= \(\frac{2\sqrt{5}-2\sqrt{3}-3\sqrt{5}+3\sqrt{3}-5\sqrt{3}+3\sqrt{5}}{5-3}\)
= \(\frac{2\sqrt{5}-2\sqrt{3}-2\sqrt{3}}{2}\)
= \(\frac{2\sqrt{5}-4\sqrt{3}}{2}\)
mk chỉ bik cách lm như z thoy còn kết quả thì mk chưa chắc đã đúng đâu nên pn xem lại nhá
\(\frac{1}{\sqrt{5}-1}+\frac{1}{1+\sqrt{5}}\)
= \(\frac{1}{\sqrt{5}-1}-\frac{1}{\sqrt{5}+1}\)
= \(\frac{\sqrt{5}+1}{\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)}-\frac{\sqrt{5}-1}{\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)}\)
= \(\frac{\sqrt{5}+1}{\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)}-\frac{\sqrt{5}+1}{\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)}\)
= \(\frac{2}{5-1}\)
= \(\frac{2}{4}\)
= \(\frac{1}{2}\)