\(A=\frac{1}{2}.xy.2xy\left(x^2+y^2\right)\le\frac{1}{2}.\frac{1}{4}\left(2xy+x^2+y^2\right)^2=2\)
\(A=\frac{1}{2}.xy.2xy\left(x^2+y^2\right)\le\frac{1}{2}.\frac{1}{4}\left(2xy+x^2+y^2\right)^2=2\)
giải bài toán: Cho x>0; y>0 và x+y≤1. Chứng minh: \(\dfrac{1}{x^2+xy}+\dfrac{1}{y^2+xy}\)≥4
cho x,y,z > 0 thỏa mãn xy+yz+xz=1. Tìm GTLN của \(A=x^2+8y^2+z^2\)
bài 1:chứng minh cac bất phương trình sau:
1) 2xyz≤ x2+y2z2 , (∀x,y,z)
2) x4+y4≥x3y+xy3 , (∀x,y)
3) a+b≤\(\sqrt{2\left(a^2+b^2\right)}\) , (∀a,b≥0)
4) 2a(b+c)≤2a2+b2+c2 , (∀a,b)
B1:Cho 2 số thực dương x,y thỏa x4+y4+\(\dfrac{1}{xy}\)=xy+2
GTNN và GTLN của biểu thức P=x.y là bao nhiêu?
B2: Cho 2 số a,b ∈ (0;1) và thỏa mãn
(a3+b3)(a+b)-ab(a-1)(b-1)=0
tìm GTLN của P=a.b
1) Cho x, y, z là những số dương. Chứng minh rằng:
√x2 + xy + y2 + √y2 + yz + z2 + √z2 + zx + x2 ≥ (x + y + z)* √3
2) Cho a + b ≥ 0, chứng minh rằng:
(a + b)(a3 + b3)(a5 + b5) ≤ 4(a9 + b9)
cho x, y, z >0 thỏa mãn x+y+z=1
chứng minh rằng :\(\dfrac{3}{xy+yz+xz}+\dfrac{2}{x^{2^{ }}+y^{2^{ }}+z^{2^{ }}}\)≥14
Cho biết \(-1\le x;y;z\le2\) và \(x+y+z=0\). Chứng minh rằng \(x^2+y^2+z^2\le6\)
Bài 1: Cho x, y, z > 0; x + y + z = 1. Tìm GTNN của biểu thức:
P = \(\dfrac{x}{x+1}\)+\(\dfrac{y}{y+1}\)+\(\dfrac{Z}{Z+1}\)
Bài 2: cho a, b, c > 0. Chứng minh rằng:
\(\dfrac{ab}{a+3b+2c}\) + \(\dfrac{bc}{b+3c+2a}\) + \(\dfrac{ac}{c+3a+2b}\) ≤ \(\dfrac{a+b+c}{6}\)
Bài 3: Cho a, b, c > 0 thỏa mãn abc = 1. Tìm GTLN của biểu thức:
P = \(\dfrac{1}{a^2+2b^2+3}\) + \(\dfrac{1}{b^2+2c^2+3}\) + \(\dfrac{1}{c^2+2a^2+3}\)
Cho các số x, y thỏa 2(x^2+y^2)=xy-6x+9y-11
Tìm GTLN của P = (x+1)^4+(y-2)^4
Các thầy cô, anh chị giải giúp em.