Bài 3: Phương trình đưa được về dạng ax + b = 0

HZ

a) 5x + 6 = 0
b) 9x - 3 = 6x + 21
c) x^3 - 9x = 0
d) 1/x-2 - x^2 -4 /4-x^2= 0

LT
23 tháng 6 2020 lúc 14:43

a) 5x + 6 = 0

<=> 5x = -6

<=> x = \(-\frac{6}{5}\)

Vậy phương trình có tập nghiệm là: S = {\(-\frac{6}{5}\)}
b) 9x - 3 = 6x + 21

<=> 3x = 24

<=> x = 8

Vậy phương trình có tập nghiệm là: S = {8}
c) x3 - 9x = 0

<=> x(x2 - 9) = 0

<=> x(x - 3)(x + 3) = 0

<=> \(\left[{}\begin{matrix}x=0\\x-3=0\\x+3=0\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\)

Vậy phương trình có tập nghiệm là: S = {0; 3; -3}
d) ĐKXĐ: \(x\ne2;x\ne-2\)

\(\frac{1}{x-2}-\frac{x^2-4}{4-x^2}=0\)

\(\Leftrightarrow\frac{1}{x-2}+\frac{x^2-4}{x^2-4}=0\)

\(\Rightarrow x+2+x^2-4=0\)

\(\Leftrightarrow x^2+x-2=0\)

\(\Leftrightarrow x^2+2x-x-2=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-1=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\left(loại\right)\\x=1\left(TM\right)\end{matrix}\right.\)

Vậy phương trình có tập nghiệm là: S ={1}

Bình luận (0)

Các câu hỏi tương tự
TA
Xem chi tiết
TT
Xem chi tiết
BN
Xem chi tiết
H24
Xem chi tiết
HB
Xem chi tiết
VN
Xem chi tiết
LT
Xem chi tiết
PT
Xem chi tiết
VP
Xem chi tiết