`1,` Ta có:
`A = 1 + 3 + 3^2 + ... + 3^2006`
`3A = 3 . (1 + 3 + 3^2 + ... + 3^2006)`
`3A= 3+ 3^2 + 3^3+ ... + 3^2007`
`2,` Ta có:
`A = 1 + 3 + 3^2 + ... + 3^2006`
`3A = 3 . (1 + 3 + 3^2 + ... + 3^2006)`
`3A= 3+ 3^2 + 3^3+ ... + 3^2007`
`3A - A = (3 + 3^2 + 3^3 + ... + 3^2007) - (1 + 3 + 3^2 + ... + 3^2006)`
`2A = 3^2007 - 1`
`-> A = (3^2007 - 1)/2 (đpcm)`
1) \(A=1+3+3^2+...+3^{2006}\)
\(3A=3.\left(1+3+3^2+...+3^{2006}\right)\)
\(3A=3+3^2+3^3+...+3^{2007}\)
2) \(3A-A=\left(3+3^2+3^3+...+3^{2007}\right)-\left(1+3+3^2+...+3^{2006}\right)\)
\(\left(3-1\right)A=3+3^2+3^3+...+3^{2006}-1-3-3^2+...+3^{2006}\)
\(2A=3^{2007}-1\)
\(A=\dfrac{3^{2007}-1}{2}\)
\(1,A=1+3+3^2+...+3^{2006}\)
\(3A=3+3^2+3^3+...+3^{2007}\)
\(2,A=1+3+3^2+...+3^{2006}\)
\(3A=3+3^2+3^3+...+3^{2007}\)
\(3A-A=3+3^2+3^3+...+3^{2007}-\left(1+3+3^2+...+3^{2006}\right)\)
\(2A=3^{2007}-1\)
\(A=\dfrac{3^{2007}-1}{2}\)