Bài 3: Đại lượng tỉ lệ nghịch

A2

6.28

cho 3 đại lượng x ,y z .Tìm mối quan hệ giữa hai đại lượng x và z , biết rằng :

a ) x và y tỉ lệ thuận , y và z tỉ lệ thuận 

b ) x và y tỉ lệ thuận , y và z  tỉ lệ nghịch 

c ) x và y tỉ lệ nghịch , y và z tỉ lệ nghịch 

 

 

H9
18 tháng 2 2023 lúc 19:26

a) Giả sử y tỉ lệ thuận với x theo hệ số tỉ lệ a nên \(y=a.x\) nên \(x=\dfrac{y}{a}\)

                y tỉ lệ thuận với z theo hệ số tỉ lệ b nên \(y=b.z\)

Do đó, \(x=\dfrac{y}{a}=\dfrac{b.z}{a}=\dfrac{b}{a}.z\left(\dfrac{b}{a}\text{là hằng số vì a,b là các hằng số}\right)\)

Vậy x tỉ lệ thuận với z và hệ số tỉ lệ là \(\dfrac{b}{a}\)

b) Giả sử y tỉ lệ thuận với x theo hệ số tỉ lệ a nên y = a.x nên \(x=\dfrac{y}{a}\)

y tỉ lệ nghịch với z theo hệ số tỉ lệ b nên \(y=\dfrac{b}{z}\)

Do đó: \(x=\dfrac{y}{a}=\dfrac{\dfrac{b}{z}}{a}=\dfrac{b}{z}:a=\dfrac{b}{z}.\dfrac{1}{a}=\dfrac{\dfrac{b}{a}}{z}\left(\dfrac{b}{a}\text{là hằng số vì a,b là các hằng số}\right)\)

Vậy x tỉ lệ nghịch với z và hệ số tỉ lệ là \(\dfrac{b}{a}\)

c) Giả sử y tỉ lệ nghịch với x theo hệ số tỉ lệ a nên \(y=\dfrac{a}{x}\)  nên \(x=\dfrac{a}{y}\)

y tỉ lệ nghịch với z theo hệ số tỉ lệ b nên \(y=\dfrac{b}{z}\)

Do đó: \(x=\dfrac{a}{y}=\dfrac{a}{\dfrac{b}{z}}=a:\dfrac{b}{z}=a.\dfrac{z}{b}=\dfrac{a}{b}.z\left(\dfrac{a}{b}\text{ là hằng số vì a,b là các hằng số}\right)\)

Vậy x tỉ lệ thuận với z và hệ số tỉ lệ là \(\dfrac{a}{b}\)

 
Bình luận (1)

Các câu hỏi tương tự
ZL
Xem chi tiết
VD
Xem chi tiết
BP
Xem chi tiết
AP
Xem chi tiết
NA
Xem chi tiết
N1
Xem chi tiết
AR
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết