\(\Leftrightarrow2cosx+2cos3x=cosx-\sqrt{3}sinx\)
\(\Leftrightarrow\dfrac{1}{2}cosx+\dfrac{\sqrt{3}}{2}sinx=-cos3x\)
\(\Leftrightarrow cos\left(x-\dfrac{\pi}{3}\right)=cos\left(\pi-3x\right)\)
\(\Leftrightarrow...\)
\(\Leftrightarrow2cosx+2cos3x=cosx-\sqrt{3}sinx\)
\(\Leftrightarrow\dfrac{1}{2}cosx+\dfrac{\sqrt{3}}{2}sinx=-cos3x\)
\(\Leftrightarrow cos\left(x-\dfrac{\pi}{3}\right)=cos\left(\pi-3x\right)\)
\(\Leftrightarrow...\)
\(\dfrac{1}{cosx\left(sinx-cosx\right)}=2\sqrt{2}sinx+\dfrac{2cosx}{sinx-cosx}\)
Bài này giải như nào ạ ??? Em cảm ơn trước nha.
a)\(sinx+cosx=\dfrac{1}{cosx}\)
b)\(4sin2x-3sin\left(2x-\dfrac{\pi}{2}\right)=5\)
c)\(sin2x+sin^2x=\dfrac{1}{2}\)
Giải hộ em 3 pt trên với! Em cảm ơn.
Giải phương trình:
1,\(sin^3x+cos^3x=1-\dfrac{1}{2}sin2x\)
2,\(|cosx-sinx|+2sin2x=1\)
3,\(2sin2x-3\sqrt{6}|sinx+cosx|+8=0\)
4,\(cosx+\dfrac{1}{cosx}+sinx+\dfrac{1}{sinx}=\dfrac{10}{3}\)
cosx- √2 sinx/sinx-1/2=0
mn giúp mk với ạ mình cần gấp ạ
\(\left(1+sinx\right)^2=cosx\)
Pt này giải sao ạ
b. sinx-\(\sqrt{3}\)cosx=1
Tìm tập xác định của hàm số
1/ \(y=\dfrac{sinx}{\sqrt{3-cosx}}\)
2/ \(y=\sqrt{1-sin3x}\)
3/ \(y=\dfrac{tan2x+1}{sinx}\)
4/ \(y=sin\sqrt{2x-1}\)
Đồ thị của hàm số nào dưới đây đi qua điểm \(M\left(0;\sqrt{ }3\right)\)
A. \(y=\sqrt{3}sinx\)
B. \(y=tanx\)
C. \(y=\sqrt{3}cosx\)
D.\(y=cosx-\sqrt{3}\)
c. (sin2x+1)(\(\sqrt{3}\)cosx-sinx-1)=0