ĐKXĐ: \(x\ge2\)
\(\sqrt{9x-18}-\sqrt{4x-8}=6\\ \Leftrightarrow\sqrt{9}.\sqrt{x-2}-\sqrt{4}.\sqrt{x-2}=6\\ \Leftrightarrow\sqrt{x-2}.\left(3-2\right)=6\\ \Leftrightarrow x-2=36\Rightarrow x=38\left(tm\right)\)
ĐKXĐ: \(x\ge2\)
\(\sqrt{9x-18}-\sqrt{4x-8}=6\\ \Leftrightarrow\sqrt{9}.\sqrt{x-2}-\sqrt{4}.\sqrt{x-2}=6\\ \Leftrightarrow\sqrt{x-2}.\left(3-2\right)=6\\ \Leftrightarrow x-2=36\Rightarrow x=38\left(tm\right)\)
Giải các phương trình sau:
a) \(\sqrt{x^2-4+4}=2-x\)
b) \(\sqrt{4x-8}-\dfrac{1}{5}\sqrt{25x-50}=3\sqrt{x-2}-1\)
c) \(\sqrt{x-1}+\sqrt{9x-9}-\sqrt{4x-4}=4\)
d) \(\dfrac{1}{2}\sqrt{x-2}-4\sqrt{\dfrac{4x-8}{9}}+\sqrt{9x-18}-5=0\)
e)\(\sqrt{49-28x+4x^2}-5=0\)
f) \(\sqrt{4x-20}+\sqrt{x-5}-\dfrac{1}{3}\sqrt{9x-45}=4\)
g) x2 - 4x - 2\(\sqrt{2x-5}+5=0\)
h)\(\sqrt{3x-2}=\sqrt{x+1}\)
i) x + y + z + 8 = \(2\sqrt{x-1}+4\sqrt{y-2}+6\sqrt{z-3}\)
k) \(\sqrt{x^2-3x}-\sqrt{x-3}=0\)
l)\(\sqrt{x^2-4}+\sqrt{x-2}=0\)
m) \(4\sqrt{x+1}=x^2-5x+14\)
n) \(\sqrt{x^2-6x+9}-\sqrt{4x^2+4x+1}=0\)
Bài 3: Giari phương trình \(\sqrt{A}\)=B
a> \(\sqrt{3x-1}\)
b> \(\sqrt{-3x+4}\) = 12
c> \(\sqrt{x^2-8x+16}\) = 4
d> \(\sqrt{9\left(x-1\right)}\) = 21
g> \(\sqrt{2-3x}\) = 10
h> \(\sqrt{4x}\) = \(\sqrt{5}\)
i> \(\sqrt{4-5x}\) = 12
p> \(\sqrt{16x}\) = 8
q> \(\sqrt{\left(x-3\right)^2}\) = 3
v> \(\sqrt{\dfrac{-6}{1+x}}\) = 5
w> \(\sqrt{4x-20}-3\)\(\sqrt{\dfrac{x-5}{9}}\) = \(\sqrt{1-x}\)
x> \(\sqrt{4x+8}\) + 2\(\sqrt{x+2}\) - \(\sqrt{9x+18}\) = 1
a'> \(\sqrt{x^2-6x+9}\)+x=11
z> \(\sqrt{16\left(x+1\right)^2}\) - \(\sqrt{9\left(x+1\right)}\) = 4
b'> \(\sqrt{9x+9}\) + \(\sqrt{4x+4}\) = \(\sqrt{x+1}\)
Tìm x biết:
a, \(\sqrt{4x^2}\) = 6
b, \(\sqrt{16x}\) = 8
c, \(\sqrt{9\left(x-1\right)}\) = 21
d, \(\sqrt{4\left(1-x\right)^2}-6=0\)
e, \(\sqrt{1-4x+4x^2}=5\)
f, \(\sqrt{9x^2}\) = 2x + 1
giải phương trình
\(\sqrt{4x-20}-3\cdot\sqrt{\frac{x-5}{9}}=\sqrt{1-x}\)
\(\sqrt{9x+9}+\sqrt{4x+4}=\sqrt{x+4}\)
\(\sqrt{x+2}+\sqrt{x-1}=3x\)
\(x^2+6=4\cdot\sqrt{x^3-2x^2+3}\)
giải giúp mk nhanh nhanh nha
Rút gọn\(B=\frac{3\sqrt{8}+2\sqrt{12}+\sqrt{20}}{3\sqrt{18}-2\sqrt{27}+\sqrt{45}}\\ C=\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)
Rút gọn biểu thức :
a) A = 4\(\sqrt{\frac{25x}{4}}-\frac{8}{3}\sqrt{\frac{9x}{4}}-\frac{4}{3x}\sqrt{\frac{9x^3}{64}}\)với x > 0
tìm x, biết
a) \(\sqrt{9x^2}\) = 12
b) \(\sqrt{4x^2}\) = |-18|
giải phương trình
a)\(\sqrt{x^2-6x+9}=4\)
b)\(\sqrt{4x^2-4x+1}=5x+3\)
c)\(\sqrt{x^2-9}+\sqrt{x^2-6x+9}=0\)
d)\(\sqrt{x^2+2x+1}+\sqrt{x^2-4x+4}=3\)
e)\(\sqrt{9x^2-12x+4}=\sqrt{x^2-10x+25}\)
1.tính
a) \(\sqrt{3-2\sqrt{2}}\)
b)\(\sqrt{28+10\sqrt{3}}\)
c)\(\sqrt{14+6\sqrt{5}}\)
d)\(\sqrt{13-4\sqrt{3}}\)
2.tính
a)\(\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}\)
b)\(\sqrt{18+8\sqrt{2}}-\sqrt{18-8\sqrt{2}}\)