Lời giải:
$(-3)-2\sqrt{3}\approx -6,46$
Lời giải:
$(-3)-2\sqrt{3}\approx -6,46$
a)\(\frac{1}{\sqrt{8}+\sqrt{7}}+\sqrt{175}-\frac{6\sqrt{2}-4}{3-\sqrt{2}}\)
b)\(\sqrt{2-\sqrt{3}}-\sqrt{\frac{3}{2}}\)
c)\(\frac{\sqrt{30}-\sqrt{2}}{\sqrt{8-\sqrt{15}}}-\sqrt{8-\sqrt{49+8\sqrt{3}}}\)
d) \(\frac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)
e)\(\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
f)\(\frac{\left(5+2\sqrt{6}\right)\left(49-20\sqrt{6}\right)\sqrt{5-2\sqrt{6}}}{9\sqrt{3}-11\sqrt{2}}\)
g)\(\frac{\frac{\sqrt{2+\sqrt{3}}}{2}}{\frac{\sqrt{2+\sqrt{3}}}{2}-\frac{2}{\sqrt{6}}+\frac{\sqrt{2+\sqrt{3}}}{2\sqrt{3}}}\)
Tìm giá trị của biểu thức;
a,\(\sqrt{5}\left(\sqrt{6}+1\right):\frac{\sqrt{2\sqrt{3}+\sqrt{2}}}{\sqrt{2\sqrt{3}-\sqrt{2}}}\)
b,\(\frac{\sqrt{3}}{1-\sqrt{\sqrt{3}+1}}+\frac{\sqrt{3}}{1+\sqrt{\sqrt{3}+1}}\)
c,\(\frac{1}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{1}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)
d,\(\frac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)
rút gon:
A=\(\dfrac{5\sqrt{3}}{\sqrt{3-\sqrt{5}}-\sqrt{3}}-\dfrac{5\sqrt{3}}{\sqrt{3-\sqrt{5}}+\sqrt{3}}\)
B=\(\dfrac{\sqrt{2}}{2\sqrt{2}+\sqrt{3+\sqrt{5}}}\)
11) \(\frac{3}{\sqrt{6}-\sqrt{3}}+\frac{4}{\sqrt{7}+\sqrt{3}}\)
12) \(\frac{6}{3\sqrt{2}+2\sqrt{3}}\)
13) \(\left(\sqrt{75}-3\sqrt{2}-\sqrt{12}\right)\left(\sqrt{3}+\sqrt{2}\right)\)
14)\(\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}+\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\)
15)\(\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}+\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}-\frac{\sqrt{5}+1}{\sqrt{5}-1}\)
16)\(\frac{\sqrt{2}}{2\sqrt{3}+4\sqrt{2}}\)
17) \(\frac{1}{4-3\sqrt{2}}-\frac{1}{4+3\sqrt{2}}\)
18)\(\frac{6}{\sqrt{2}-\sqrt{3}+3}\)
19)\(\frac{\sqrt{3+2\sqrt{2}}+\sqrt{3-2\sqrt{2}}}{\sqrt{3+2\sqrt{2}}-\sqrt{3-2\sqrt{2}}}\)
20)\(\sqrt{24}+6\sqrt{\frac{2}{3}}+\frac{10}{\sqrt{6}-1}\)
21)\(2\sqrt{40\sqrt{12}}-2\sqrt{\sqrt{75}}-3\sqrt{5\sqrt{58}}\)
22)\(4\sqrt{20}-3\sqrt{125}+5\sqrt{45}-15\sqrt{\frac{1}{5}}\)
23)\(\left(3\sqrt{8}-2\sqrt{12}+\sqrt{20}\right):\left(3\sqrt{18}-2\sqrt{27}+\sqrt{45}\right)\)
24)\(\left(\frac{15}{\sqrt{6}+1}+\frac{4}{\sqrt{6}-2}-\frac{12}{3-\sqrt{6}}\right)\left(\sqrt{6}+11\right)\)
25)\(\left(\sqrt{7}-\sqrt{5}\right)^2+2\sqrt{35}\)
26)\(\frac{\sqrt{6}+\sqrt{14}}{2\sqrt{3}+\sqrt{28}}+\frac{3\sqrt{45}+\sqrt{243}}{\sqrt{5}+\sqrt{3}}\)
27)\(\frac{1}{\sqrt{7-\sqrt{24}}+1}-\frac{1}{\sqrt{7+\sqrt{24}}-1}\)
28)\(\frac{1}{2+\sqrt{3}}+\frac{1}{\sqrt{3}}-\frac{2}{3+\sqrt{3}}\)
29)\(\frac{3+\sqrt{5}}{2\sqrt{2}+\sqrt{3+\sqrt{5}}}+\frac{3-\sqrt{5}}{2\sqrt{2}-\sqrt{3-\sqrt{5}}}\)
30)\(\left(15\sqrt{50}+5\sqrt{200}-3\sqrt{450}\right):\sqrt{10}\)
31)\(\left(\frac{2}{\sqrt{3}-1}+\frac{3}{\sqrt{3}-2}+\frac{15}{3-\sqrt{3}}\right).\frac{1}{\sqrt{3}+5}\)
32)\(\frac{5+\sqrt{5}}{5-\sqrt{5}}+\frac{5-\sqrt{5}}{5+\sqrt{5}}-\sqrt{10}\)
\(\dfrac{6-\sqrt{6}}{\sqrt{6}-1}+\dfrac{6-\sqrt{6}}{\sqrt{6}}\)
\(\dfrac{1}{\sqrt{2}-\sqrt{3}}-\dfrac{3}{\sqrt{18}+2\sqrt{3}}\)
\(\left(\dfrac{15}{3-\sqrt{3}}-\dfrac{2}{1-\sqrt{3}}+\dfrac{3}{\sqrt{3}-2}\right):\sqrt{28+10\sqrt{3}}\)
thực hiện phép tính
A=\(\sqrt{\dfrac{2-\sqrt{3}}{2+\sqrt{3}}}+\sqrt{\dfrac{2+\sqrt{3}}{2-\sqrt{3}}}\)
B=\(\sqrt{\dfrac{3-\sqrt{5}}{\sqrt{10}+\sqrt{2}}}\cdot\left(3+\sqrt{5}\right)\)
thực hiện phép tính:
1, \(\dfrac{\sqrt{15}-\sqrt{5}}{\sqrt{3}-1}-\dfrac{5-2\sqrt{5}}{2\sqrt{5}-4}\)
2,\(\dfrac{\sqrt{3}+1}{\sqrt{3}-1}+\dfrac{\sqrt{3}-1}{\sqrt{3}+1}\)
3,\(\dfrac{2\sqrt{8}-\sqrt{12}}{\sqrt{18}-\sqrt{48}}+\dfrac{\sqrt{5}+\sqrt{27}}{\sqrt{30}-\sqrt{2}}\)
4,\(\dfrac{3-\sqrt{3}}{2\sqrt{3}-1}+\dfrac{3+\sqrt{3}}{2\sqrt{3}-1}\)
5,\(\dfrac{2\sqrt{3}-4}{\sqrt{3}-1}+\dfrac{2\sqrt{2}-1}{\sqrt{2}-1}-\dfrac{1+\sqrt{6}}{\sqrt{2}+\sqrt{3}}\)
\(\dfrac{\sqrt{2}-1}{\sqrt{2}+1}-\dfrac{3-\sqrt{2}}{3+\sqrt{2}}\)
\(\dfrac{1}{\sqrt{2}-\sqrt{3}}-\dfrac{3}{\sqrt{18}+2\sqrt{3}}\)
1 )\(\sqrt{2-\sqrt{3}}.\left(\sqrt{6}-\sqrt{2}\right).\left(2+\sqrt{3}\right)\)
2) \(\left(2\sqrt{3}+\sqrt{5}\right).\sqrt{3}-\sqrt{60}\)
3)\(\sqrt{4-2\sqrt{3}}-\dfrac{3+\sqrt{3}}{\sqrt{3}-1}+\dfrac{2}{\sqrt{3}-1}\)
\(\sqrt{\dfrac{2-\sqrt{3}}{2+\sqrt{3}}+\sqrt{\dfrac{2+\sqrt{3}}{2-\sqrt{3}}}}\)