\(2^{x+22}-4^{x+11}=0\)
\(\Rightarrow2^{x+22}-2^{2x+22}=0\)
\(\Rightarrow2^x\cdot\left(2^{22}-2^{x+22}\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2^x=0\left(L\right)\\2^{22}-2^{x+22}=0\end{matrix}\right.\)
\(\Rightarrow2^{x+22}=2^{22}\)
\(\Rightarrow x+22=22\)
\(\Rightarrow x=22-22\)
\(\Rightarrow x=0\)
Vậy x=0
\(2^{x+22}-4^{x+11}\text{=}0\)
\(2^{x+22}\text{=}4^{x+11}\)
\(2^x.2^{22}\text{=}4^x.4^{11}\)
\(2^x.2^{22}\text{=}4^x.\left(2^2\right)^{11}\)
\(2^x.2^{22}\text{=}4^x.2^{22}\)
\(2^x\text{=}4^x\)
\(x\text{=}0\)
\(2^{x+22}-4^{x+11}=0\)
\(\Rightarrow2^{x+22}-2^{2\left(x+11\right)}=0\)
\(\Rightarrow2^{x+22}-2^{2x+22}=0\)
\(\Rightarrow2^{x+22}\left(1-2^x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2^{x+22}=0\left(vô.lý\right)\\1-2^x=0\end{matrix}\right.\)
\(\Rightarrow2^x=1=2^0\)
\(\Rightarrow x=0\)
2ˣ⁺²² - 4ˣ⁺¹¹ = 0
2ˣ⁺²² - (2²)ˣ⁺¹¹ = 0
2ˣ⁺²² - 2²ˣ⁺²² = 0
2ˣ⁺²².(1 - 2ˣ) = 0
2ˣ⁺²² = 0 hoặc 1 - 2ˣ = 0
*) 2ˣ⁺²² = 0 (vô lý)
*) 1 - 2ˣ = 0
2ˣ = 1
2ˣ = 2⁰
x = 0
Vậy x = 0