\(\left(1+\sqrt{2}-\sqrt{3}\right)\left(1+\sqrt{2}+\sqrt{3}\right)=\left(1+\sqrt{2}\right)^2-\sqrt{3}^2=1+2\sqrt{2}+2-3=2\sqrt{2}\)
\(\left(1+\sqrt{2}-\sqrt{3}\right)\left(1+\sqrt{2}+\sqrt{3}\right)=\left(1+\sqrt{2}\right)^2-\sqrt{3}^2=1+2\sqrt{2}+2-3=2\sqrt{2}\)
a rút gọn biểu thức: T=\(\dfrac{1}{2\sqrt{1}+1\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+\dfrac{1}{4\sqrt{3}+3\sqrt{4}}+...+\dfrac{1}{100\sqrt{99}+99\sqrt{100}}\)
b tìm số tự nhiên n thỏa mãn
\(\dfrac{1}{2\sqrt{1}+1\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+\dfrac{1}{4\sqrt{3}+3\sqrt{4}}+...+\dfrac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\dfrac{4}{5}\)
rút gọn biểu thức A=\(\dfrac{1}{\sqrt{1}+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+\dfrac{1}{\sqrt{3}+\sqrt{4}}+...+\dfrac{1}{\sqrt{99}+\sqrt{100}}\)
B=\(\dfrac{1}{\sqrt{1}-\sqrt{2}}-\dfrac{1}{\sqrt{2}-\sqrt{3}}+\dfrac{1}{\sqrt{3}-\sqrt{4}}-...-\dfrac{1}{\sqrt{24}-\sqrt{25}}\)
Bài 1 : Tính :
a) \(\dfrac{1}{5+2\sqrt{6}}-\dfrac{1}{5-2\sqrt{6}}\)
b) \(\sqrt{6+2\sqrt{5}}-\dfrac{\sqrt{15}-\sqrt{3}}{\sqrt{3}}\)
c) \(\dfrac{3\sqrt{2}-2\sqrt{3}}{\sqrt{3}-\sqrt{2}}:\dfrac{1}{\sqrt{16}}\)
d) \(\dfrac{3+2\sqrt{3}}{\sqrt{3}}+\dfrac{2+\sqrt{2}}{1+\sqrt{2}}-\dfrac{1}{2-\sqrt{3}}\)
e) \(\dfrac{4}{1+\sqrt{3}}-\dfrac{\sqrt{15}+\sqrt{3}}{1+\sqrt{5}}\)
f) \(\left(\dfrac{1}{2-\sqrt{5}}+\dfrac{2}{\sqrt{5}-\sqrt{3}}\right):\dfrac{1}{\sqrt{21-12\sqrt{3}}}\)
Bài 2 : Rút gọn :
a) \(\dfrac{a+b-2\sqrt{ab}}{\sqrt{a}-\sqrt{b}}:\dfrac{1}{\sqrt{a}+\sqrt{b}}\)
b) \(\left(\dfrac{\sqrt{a}}{2}-\dfrac{1}{2\sqrt{a}}\right).\left(\dfrac{a-\sqrt{a}}{\sqrt{a}+1}-\dfrac{a+\sqrt{a}}{\sqrt{a}-1}\right)\)
c) \(\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)
a) \(\dfrac{1}{7+4\sqrt{3}}+\dfrac{1}{7-4\sqrt{3}}\)
b) \(\dfrac{3}{\sqrt{2}-1}+\dfrac{\sqrt{6}+\sqrt{2}}{\sqrt{3}+1}\)
c) \(\dfrac{3}{\sqrt{5}-2}-\dfrac{3}{\sqrt{5}+2}\)
đơn giản hóa biểu thức : S= (1 + 2sqrt(2))/(1 + sqrt(2)) + (sqrt(2) + sqrt(3) + sqrt(6))/(3(sqrt(2) + sqrt(3))) + 2+3 sqrt 3 6(2+ sqrt 3) +\ + 4+5 sqrt 17 136(4+ sqrt 17) .
Rút gọn:
a)\(\dfrac{5\sqrt{2}-2\sqrt{5}}{\sqrt{5}-\sqrt{2}}+\dfrac{6}{2-\sqrt{10}}\)
b)\(\dfrac{6}{\sqrt{5}-1}+\dfrac{7}{1-\sqrt{3}}-\dfrac{2}{\sqrt{3}-\sqrt{5}}\)
c)\(\left(\dfrac{\sqrt{14}-\sqrt{7}}{1-\sqrt{2}}+\dfrac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}\right)\div\dfrac{1}{\sqrt{7}-\sqrt{5}}\)
d)\(\sqrt{2}+\dfrac{1}{\sqrt{5+2\sqrt{6}}}+\dfrac{2}{\sqrt{8+2\sqrt{15}}}\)
e)\(\left(\dfrac{15}{\sqrt{6}+1}+\dfrac{4}{\sqrt{6}-2}-\dfrac{12}{3-\sqrt{6}}\right)\times\left(\sqrt{6}+11\right)\)
Lm nhanh giúp mk nhé, mk đang cần gấp!
Tính giá trị biểu thức:
\(a,\frac{2}{\sqrt{6}-2}+\frac{2}{\sqrt{6}+2}+\frac{5}{\sqrt{6}}\)
\(b,\frac{1}{\sqrt{3}+\sqrt{2}-\sqrt{5}}-\frac{1}{\sqrt{3}+\sqrt{2}+\sqrt{5}}\)
\(c,\left(\frac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}}-\frac{5}{\sqrt{5}}\right):\frac{1}{\sqrt{5}-\sqrt{2}}\)
\(d,\frac{1}{\sqrt{3}}+\frac{1}{3\sqrt{2}}+\frac{1}{\sqrt{3}}\sqrt{\frac{5}{12}-\frac{1}{\sqrt{6}}}\)
Tính
A/\(\left(\frac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}-\frac{\sqrt{216}}{3}\right).\frac{1}{\sqrt{6}}\)
B/ \(\left(\frac{\sqrt{14}-\sqrt{7}}{1-\sqrt{2}}+\frac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}\right):\frac{1}{\sqrt{7}-\sqrt{5}}\)
C/ \(\frac{5}{4-\sqrt{11}}+\frac{1}{3+\sqrt{7}}-\frac{6}{\sqrt{7}-2}-\frac{\sqrt{7}-5}{2}\)
D/ \(\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}+\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}-\frac{\sqrt{5}+1}{\sqrt{5}-1}\)
Tính
a/\(\left(\frac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}-\frac{\sqrt{216}}{3}\right).\frac{1}{\sqrt{6}}\)
b/\(\left(\frac{5}{4-\sqrt{11}}+\frac{1}{3+\sqrt{7}}-\frac{6}{\sqrt{7}-2}-\frac{\sqrt{7}-5}{2}\right)\)
c/\(\left(\frac{\sqrt{14}-\sqrt{7}}{1-\sqrt{2}}+\frac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}\right):\frac{1}{\sqrt{7}-\sqrt{5}}\)
d/\(\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}+\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}-\frac{\sqrt{5}+1}{\sqrt{5}-1}\)
Mọi người ơi giúp em bài này với
Ai đã từng học lớp 9 rồi thì giúp em pls
Tính:
1, \(\frac{1}{1+\sqrt{5}}+\frac{1}{\sqrt{5}-1}\)
2, \(\frac{1}{\sqrt{2}-\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{2}}\)
3, \(\frac{1}{3+\sqrt{5}}+\frac{1}{\sqrt{5}-3}\)
4, \(\frac{1}{\sqrt{2}-\sqrt{6}}-\frac{1}{\sqrt{6}+\sqrt{2}}\)
5, \(\frac{1}{3-2\sqrt{2}}+\frac{1}{2+\sqrt{5}}\)
6, \(\frac{1}{3-2\sqrt{2}}-\frac{1}{3+2\sqrt{2}}\)
7, \(\frac{1}{\sqrt{5}-\sqrt{2}}+\frac{2}{1-\sqrt{7}}\)
8, \(\frac{1}{\sqrt{2}-\sqrt{3}}-\frac{3}{18+2\sqrt{3}}\)
9, \(\frac{1}{5+2\sqrt{6}}-\frac{1}{5-2\sqrt{6}}\)
10, \(\frac{4}{1-\sqrt{3}}+\frac{\sqrt{3}-1}{\sqrt{3}+1}\)