16. Cho hình thang ABCD (AB//CD),AC\(\perp\)BD,BD=29 cm , chiều cao của hình thang là 21 cm .Tính đường trung bình của hình thang.
18.Cho \(\Delta\)ABC cân tại A, đường cao AD,BE,CF. Đường thẳng qua B và song song với CF cắt AC tại H
a, AC = trung bình nhân của AE và AH
b,\(\frac{1}{CF^2}\)=\(\frac{1}{BC^2}\)+\(\frac{1}{4AD^2}\)
9. Cho\(\Delta\)ABC cân tại A . Vẽ các đường cao BE và CD . Từ B vẽ một đường thẳng song song với CD cắt AC tại F
Cmr: AE nhân AF=AC2
18. a) Dễ cm : AE = AF
+ EF // BH \(\Rightarrow\frac{AF}{AB}=\frac{AC}{AH}\Rightarrow\frac{AE}{AC}=\frac{AC}{AH}\)
\(\Rightarrow AC^2=AE\cdot AH\Rightarrow AC=\sqrt{AE\cdot AH}\)
b) Qua C kẻ đg thẳng // với AD cắt AB tại I
+ AD là đg TB của ΔBCI
=> CI = 2AD \(\Rightarrow CI^2=\left(2AD\right)^2=4AD^2\)
+ CI // AD => CI ⊥ BC
+ ΔBCI vuông tại C, đg cao CF
\(\Rightarrow\frac{1}{CF^2}=\frac{1}{BC^2}+\frac{1}{CI^2}=\frac{1}{BC^2}+\frac{1}{4AD^2}\)
bài cuối tương tự câu a) bài trên
16. Qua B kẻ đg thẳng // với AC cắt CD tại I
Gọi BH là chiều cao của hình thang ABCD
+ BI // AC => BI ⊥ BD
+ Tứ giác ABIC là hbh => AB = CI
=> AB + CD = CD + CI = DI
+ ΔBDH vuông tại H
\(\Rightarrow DH=\sqrt{BD^2-BH^2}=20\) ( cm )
+ ΔBDI vuông tại B, đg cao BH
\(\Rightarrow BD^2=DH\cdot DI\)
\(\Rightarrow DI=\frac{29^2}{20}=42,05\) ( cm )
=> Độ dài đg TB của hình thang ABCD là :
\(\frac{1}{2}\left(AB+CD\right)=\frac{1}{2}DI=21,025\) ( cm )