Bài 2: Căn thức bậc hai và hằng đẳng thức căn bậc hai của bình phương

NH

1) Tính giá trị biểu thức C=\(\sqrt{1+\dfrac{1}{1^2}+\dfrac{1}{2^2}}+\sqrt{1+\dfrac{1}{2^2}+\dfrac{1}{3^2}}+\sqrt{1+\dfrac{1}{3^2}+\dfrac{1}{4^2}}+...+\sqrt{1+\dfrac{1}{99^2}+\dfrac{1}{100^2}}\) 2) Chứng minh rằng với mọi số nguyên dương n ta đêu có \(\sqrt{4+\sqrt{4+\sqrt{4+\sqrt{4+...+\sqrt{4}}}}}\) < 3 ( n căn bậc 4) Mọi người giúp em với ạ

HN
17 tháng 7 2018 lúc 16:24

2/ \(\sqrt{4+\sqrt{4+...+\sqrt{4}}}< \sqrt{6+\sqrt{6+\sqrt{6+...+\sqrt{7+\sqrt{4}}}}}=3\)

1/ Ta có:

\(\sqrt{1+\dfrac{1}{n^2}+\dfrac{1}{\left(n+1\right)^2}}=\sqrt{\left(\dfrac{n^2+n+1}{n\left(n+1\right)}\right)^2}=\dfrac{n\left(n+1\right)+1}{n\left(n+1\right)}=1+\dfrac{1}{n}-\dfrac{1}{n+1}\)

\(\Rightarrow C=99+\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}=100-\dfrac{1}{100}=\dfrac{9999}{100}\)

Bình luận (1)
DD
17 tháng 7 2018 lúc 16:52

Bài 1 : Điều đầu tiên ta chứng minh được công thức :

\(\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{\left(a+b\right)^2}}=\dfrac{1}{a}+\dfrac{1}{b}-\dfrac{1}{a+b}\)

Ta có :

\(\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{\left(a+b\right)^2}}=\sqrt{\dfrac{a^4+2a^3b+a^2b^2+2ab^3+b^4}{a^2b^2\left(a+b\right)^2}}=\sqrt{\left(\dfrac{a^2+ab+b^2}{ab\left(a+b\right)}\right)^2}=\dfrac{a^2+ab+b^2}{ab\left(a+b\right)}=\dfrac{1}{b}+\dfrac{b}{a\left(a+b\right)}=\dfrac{1}{b}+\dfrac{1}{a}-\dfrac{1}{a+b}\)

\(\Rightarrow C=1+\dfrac{1}{1}-\dfrac{1}{2}+1+\dfrac{1}{2}-\dfrac{1}{3}+1+\dfrac{1}{3}-\dfrac{1}{4}+1+\dfrac{1}{4}-\dfrac{1}{5}+........+1+\dfrac{1}{99}-\dfrac{1}{100}\)

\(=100-\dfrac{1}{100}=\dfrac{9999}{100}\)

Bình luận (0)
VU
15 tháng 8 2018 lúc 21:03

Câu 1: \(\sqrt{1+\dfrac{1}{1^2}+\dfrac{1}{2^3}}+\sqrt{1+\dfrac{1}{2^2}+\dfrac{1}{3^3}}+\sqrt{1+\dfrac{1}{3^3}+\dfrac{1}{4^2}}+....+\sqrt{1+\dfrac{1}{99^2}+\dfrac{1}{100^2}}\)

= \(\sqrt{1+\dfrac{1}{1^2}+\dfrac{1}{\left(1+1\right)^2}}+\sqrt{1+\dfrac{1}{2^2}+\dfrac{1}{\left(1+2\right)^2}}+\sqrt{1+\dfrac{1}{3^2}+\dfrac{1}{\left(1+3\right)^2}}+...+\sqrt{1+\dfrac{1}{99^2}+\dfrac{1}{\left(1+99\right)^2}}\)

= \(|1+\dfrac{1}{1}-\dfrac{1}{2}|+|1+\dfrac{1}{2}-\dfrac{1}{3}|+|1+\dfrac{1}{3}-\dfrac{1}{4}|+.....+|1+\dfrac{1}{99}-\dfrac{1}{100}|\)

= \(1+1-\dfrac{1}{2}+1+\dfrac{1}{2}-\dfrac{1}{3}+1+\dfrac{1}{3}-\dfrac{1}{4}+...+1+\dfrac{1}{99}-\dfrac{1}{100}\)

= 2019-\(\dfrac{1}{100}\)

Bình luận (0)

Các câu hỏi tương tự
LT
Xem chi tiết
NT
Xem chi tiết
KC
Xem chi tiết
KG
Xem chi tiết
KG
Xem chi tiết
H24
Xem chi tiết
OO
Xem chi tiết
TA
Xem chi tiết
H24
Xem chi tiết