Ôn tập chương 1: Căn bậc hai. Căn bậc ba

BN

1/ \(Q=\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\)

a) Rút gọn Q

b) tìm giá trị nhỏ nhất của Q

c) Tìm các số nguyên x để \(\dfrac{3Q}{\sqrt{x}}\) nhận gía trị nguyên

giúp mình với, mk cần gấp

TN
27 tháng 11 2018 lúc 18:19

ĐK: x>0,\(x\ne1\)

a) \(Q=\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}=\dfrac{\sqrt{x}\left(x\sqrt{x}-1\right)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\dfrac{2\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}-1}=\sqrt{x}\left(\sqrt{x}-1\right)-\left(2\sqrt{x}+1\right)+2\left(\sqrt{x}+1\right)=x-\sqrt{x}-2\sqrt{x}-1+2\sqrt{x}+2=x-\sqrt{x}+1\)

b) Ta có Q=\(x-\sqrt{x}+1=x-2\sqrt{x}.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}=\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

Ta có \(\left(\sqrt{x}-\dfrac{1}{2}\right)^2\ge0\Leftrightarrow\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\Leftrightarrow Q\ge\dfrac{3}{4}\)

Dấu bằng xảy ra khi \(\sqrt{x}-\dfrac{1}{2}=0\Leftrightarrow x=\dfrac{1}{4}\)

Vậy GTNN của Q là \(\dfrac{3}{4}\) và xảy ra khi \(x=\dfrac{1}{4}\)

c)

Ta có \(\dfrac{3Q}{\sqrt{x}}=\dfrac{3\left(x-\sqrt{x}+1\right)}{\sqrt{x}}=\dfrac{3x-3\sqrt{x}+3}{\sqrt{x}}=3\sqrt{x}-3+\dfrac{3}{\sqrt{x}}\)Vậy để \(\dfrac{3Q}{\sqrt{x}}\) nguyên thì \(\left\{{}\begin{matrix}\sqrt{x}\in Z\\\sqrt{x}\inƯ\left(3\right)\in\left(1;3\right)\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(ktm\right)\\x=9\left(tm\right)\end{matrix}\right.\)

Vậy x=9 thì \(\dfrac{3Q}{\sqrt{x}}\) nhận giá trị nguyên

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
AL
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
HC
Xem chi tiết
AH
Xem chi tiết
H24
Xem chi tiết
LT
Xem chi tiết