Bài 2: Phép tịnh tiến

VC

1. Phép tịnh tiến theo vecto \(\overrightarrow{v}\) biến đường thằng d: x+y=0 thành d':x+y-4=0. Biết \(\overrightarrow{v}\) cùng phương với vecto \(\overrightarrow{u}\) =(1;1). Tính độ dài vecto \(\overrightarrow{v}\)

2. Cho 2 đường thẳng d:x+y-1=0 và d':x+y-5=0. Phép tịnh tiến theo vecto \(\overrightarrow{u}\) biến đường thẳng d thành d'. Khi đó độ dài nhỏ nhất của vecto \(\overrightarrow{u}\)là bao nhiêu?

3. Cho 3 đường thẳng d:2x+y+3=0, d':2x+y-1=0. Có bao nhiêu vecto \(\overrightarrow{v}\)có độ dàu bằng 2 sao cho phép tịnh tiến theo vecto \(\overrightarrow{v}\)biến d thành d'

4. Cho 2 đường thẳng d; x+y+3=0, d':x+y+m=0. Biết có duy nhất một vecto \(\overrightarrow{v}\)có độ dài bằng \(\sqrt{2}\) sao cho phép tịnh tiến theo vecto \(\overrightarrow{v}\) biến d thành d'. Tìm m

NL
18 tháng 10 2020 lúc 7:41

1.

Do \(\overrightarrow{v}\) cùng phương với \(\overrightarrow{u}\) nên \(\overrightarrow{v}=\left(a;a\right)\) với a là số thực khác 0

Chọn \(M\left(0;0\right)\) là 1 điểm thuộc d

Gọi M' là ảnh của M qua phép tịnh tiến \(\overrightarrow{v}\Rightarrow M'\in d'\)

\(\left\{{}\begin{matrix}x_{M'}=a+0=a\\y_{M'}=a+0=a\end{matrix}\right.\) \(\Rightarrow M'\left(a;a\right)\)

Thay vào pt d' ta được:

\(a+a-4=0\Rightarrow a=2\)

\(\Rightarrow\overrightarrow{v}=\left(2;2\right)\)

\(\Rightarrow\left|\overrightarrow{v}\right|=2\sqrt{2}\)

Bình luận (0)
 Khách vãng lai đã xóa
NL
18 tháng 10 2020 lúc 7:46

2.

Gọi \(\overrightarrow{u}=\left(a;b\right)\)

Gọi \(A\left(0;1\right)\) là 1 điểm thuộc d

Gọi A' là ảnh của A qua phép tịnh tiến \(\overrightarrow{u}\Rightarrow A'\in d'\)

Ta có: \(\left\{{}\begin{matrix}x_{A'}=a\\y_{A'}=b+1\end{matrix}\right.\)

Thay tọa độ A' vào pt d' ta được: \(a+b+1-5=0\Leftrightarrow a+b=4\)

Ta có:

\(\left|\overrightarrow{u}\right|=\sqrt{a^2+b^2}\ge\sqrt{\frac{1}{2}\left(a+b\right)^2}=2\sqrt{2}\)

\(\Rightarrow\left|\overrightarrow{u}\right|_{min}=2\sqrt{2}\) khi \(a=b=2\)

Bình luận (0)
 Khách vãng lai đã xóa
NL
18 tháng 10 2020 lúc 7:50

3.

Gọi \(\overrightarrow{v}=\left(a;b\right)\Rightarrow a^2+b^2=4\) (1)

Gọi \(A\left(-1;-1\right)\) là 1 điểm thuộc d

Gọi A' là ảnh của A qua phép tịnh tiến \(\overrightarrow{v}\Rightarrow A'\in d'\)

Ta có: \(\left\{{}\begin{matrix}x_{A'}=-1+a\\x_{B'}=-1+b\end{matrix}\right.\)

Thay vào pt d':

\(2\left(a-1\right)+2\left(b-1\right)-1=0\)

\(\Leftrightarrow2a+2b=5\Rightarrow b=\frac{5-2a}{2}\)

Thế vào (1):

\(a^2+\left(\frac{5-2a}{2}\right)^2=4\)

\(\Leftrightarrow8a^2-20a+9=0\)

Pt trên có 2 nghiệm pb nên có 2 vecto thỏa mãn

Bình luận (0)
NL
18 tháng 10 2020 lúc 7:56

4.

Gọi \(\overrightarrow{v}=\left(a;b\right)\Rightarrow a^2+b^2=2\) (1)

Gọi \(A\left(0;-3\right)\) là 1 điểm thuộc d

Gọi A' là ảnh của A qua phép tịnh tiến \(\overrightarrow{v}\Rightarrow A'\in d'\)

Ta có: \(\left\{{}\begin{matrix}x_{A'}=a\\x_{B'}=-3+b\end{matrix}\right.\)

Thế vào pt d':

\(a+b+m-3=0\Leftrightarrow b=3-m-a\)

Thế vào (1):

\(a^2+\left(3-m-a\right)^2=2\)

\(\Leftrightarrow2a^2+2\left(m-3\right)a+m^2-6m+7=0\) (2)

Tồn tại duy nhất 1 vecto \(\overrightarrow{v}\) khi và chỉ khi (2) có đúng 1 nghiệm a

\(\Leftrightarrow\Delta'=\left(m-3\right)^2-2\left(m^2-6m+7\right)=0\)

\(\Leftrightarrow m^2-6m+5=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=1\\m=5\end{matrix}\right.\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
TV
Xem chi tiết
NT
Xem chi tiết
LP
Xem chi tiết
H24
Xem chi tiết
MV
Xem chi tiết
H24
Xem chi tiết
TN
Xem chi tiết
QD
Xem chi tiết
H24
Xem chi tiết