H24

1) \(\lim\limits_{x\rightarrow4}\dfrac{\sqrt{2x+1}-\sqrt{x+5}}{x-4}\)

2)  \(\lim\limits_{x\rightarrow0}\dfrac{\sqrt{1-x}-\sqrt{1+x}}{x}\)

NT
2 tháng 12 2023 lúc 22:13

1: \(\lim\limits_{x\rightarrow4}\dfrac{\sqrt{2x+1}-\sqrt{x+5}}{x-4}\)

\(=\lim\limits_{x\rightarrow4}\dfrac{2x+1-x-5}{\sqrt{2x+1}+\sqrt{x+5}}\cdot\dfrac{1}{x-4}\)

\(=\lim\limits_{x\rightarrow4}\dfrac{x-4}{x-4}\cdot\dfrac{1}{\sqrt{2x+1}+\sqrt{x+5}}\)

\(=\lim\limits_{x\rightarrow4}\dfrac{1}{\sqrt{2x+1}+\sqrt{x+5}}=\dfrac{1}{\sqrt{2\cdot4+1}+\sqrt{4+5}}\)

\(=\dfrac{1}{\sqrt{9}+\sqrt{9}}=\dfrac{1}{6}\)

2: \(\lim\limits_{x\rightarrow0}\dfrac{\sqrt{1-x}-\sqrt{1+x}}{x}\)

\(=\lim\limits_{x\rightarrow0}\dfrac{1-x-1-x}{\sqrt{1-x}+\sqrt{1+x}}\cdot\dfrac{1}{x}\)

\(=\lim\limits_{x\rightarrow0}\dfrac{-2x}{x\cdot\left(\sqrt{1-x}+\sqrt{1+x}\right)}\)

\(=\lim\limits_{x\rightarrow0}\dfrac{-2}{\sqrt{1-x}+\sqrt{1+x}}=\dfrac{-2}{\sqrt{1-0}+\sqrt{1+0}}\)
\(=\dfrac{-2}{1+1}=-1\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
DN
Xem chi tiết
YS
Xem chi tiết
DN
Xem chi tiết
DT
Xem chi tiết
DN
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết