Bài 3: Tính chất đường phân giác của tam giác

LD

1. Cho hình thang ABCD (AB//CD). Đường thẳng a song song với DC, cắt các cạnh AD và BC theo thứ tự tại M và N.

Chứng minh rằng: a) \(\dfrac{AM}{MD}=\dfrac{BN}{NC};\) b)\(\dfrac{AM}{AD}=\dfrac{BN}{BC};\) c)\(\dfrac{DM}{DA}=\dfrac{CN}{CB}.\)

2. Cho hình thang ABCD (AB // CD). Hai đường chéo AC và BD cắt nhau tại O. Đường thẳng a qua O và song song với đáy của hình thang cắt các cạnh bên AD, BC theo thứ tự tại E và F (h.24).

So sánh OE và OF.

Y
28 tháng 2 2019 lúc 22:17

2. A B C D O E F

+ AB // CD \(\Rightarrow\dfrac{AO}{CO}=\dfrac{BO}{DO}\)

\(\Rightarrow\dfrac{AO}{AO+CO}=\dfrac{BO}{BO+DO}\Rightarrow\dfrac{AO}{AC}=\dfrac{BO}{BD}\)

+ OE // CD => \(\dfrac{OE}{CD}=\dfrac{AO}{AC}\)

+ OF // CD => \(\dfrac{OF}{DC}=\dfrac{BO}{BD}\)

\(\Rightarrow\dfrac{OE}{CD}=\dfrac{OF}{DC}\Rightarrow OE=OF\)

Bình luận (0)
NT
17 tháng 1 2023 lúc 10:20

Bài 1:

a: Xét hình thang ABCD có MN//AB//CD

nên AM/MD=BN/NC

b: AM/MD=BN/NC

=>MD/AM=NC/BN

=>\(\dfrac{MD+AM}{AM}=\dfrac{NC+BN}{BN}\)

=>AD/AM=BC/BN

=>AM/AD=BN/BC

c: AM/AD=BN/BC

=>1-AM/AD=1-BN/BC

=>DM/AD=CN/CB

Bình luận (0)

Các câu hỏi tương tự
SK
Xem chi tiết
SK
Xem chi tiết
LN
Xem chi tiết
TD
Xem chi tiết
KD
Xem chi tiết
SS
Xem chi tiết
LG
Xem chi tiết
AN
Xem chi tiết
TT
Xem chi tiết