TP

Cho các số thực dương a,b,c thỏa mãn a + b + c = 1

Tìm giá trị nhỏ nhất của biểu thức \(P=\dfrac{9}{\left(ab+bc+ca\right)}+\dfrac{2}{a^2+b^2+c^2}.\)

TH
26 tháng 12 2023 lúc 21:00

\(P=\dfrac{9}{ab+bc+ca}+\dfrac{2}{a^2+b^2+c^2}\)

\(=2\left[\dfrac{1}{a^2+b^2+c^2}+\dfrac{4}{2\left(ab+bc+ca\right)}\right]+\dfrac{5}{ab+bc+ca}\)

\(\ge2.\dfrac{\left(1+2\right)^2}{\left(a+b+c\right)^2}+\dfrac{5}{ab+bc+ca}\)

\(=\dfrac{18}{1}+\dfrac{5}{ab+bc+ca}\ge18+5.\dfrac{3}{\left(a+b+c\right)^2}=18+15=33\)

Đẳng thức xảy ra khi a=b=c=1/3.

Vậy GTNN của P là 33.

Bình luận (0)

Các câu hỏi tương tự
TP
Xem chi tiết
TP
Xem chi tiết
ND
Xem chi tiết
Xem chi tiết
KD
Xem chi tiết
VL
Xem chi tiết
NA
Xem chi tiết
NN
Xem chi tiết
TP
Xem chi tiết