H24

1) B= 1+3+32+...+31999+32000

2) C= 1+4+42+...+499+4100

3) D= 72+73+74+...+72019+72020

Tính các tổng hộ mình nhé.

H24
5 tháng 10 2023 lúc 18:45

\(1)B=1+3+3^2+...+3^{1999}+3^{2000}\\3B=3+3^2+3^3+...+3^{2000}+3^{2001}\\3B-B=3+3^2+3^3+...+3^{2000}+3^{2001}-(1+3+3^2+...+3^{1999}+3^{2000})\\2B=3^{2001}-1\\\Rightarrow B=\dfrac{3^{2001}-1}{2}\\---\)

\(2)C=1+4+4^2+...+4^{99}+4^{100}\\4C=4+4^2+4^3+...+4^{100}+4^{101}\\4C-C=4+4^2+4^3+...+4^{100}+4^{101}-(1+4+4^2+....+4^{99}+4^{100})\\3C=4^{101}-1\\\Rightarrow C=\dfrac{4^{101}-1}{3}\)

#\(Toru\)

Bình luận (2)
H9
5 tháng 10 2023 lúc 18:57

1) \(B=1+3+3^2+...+3^{1999}+3^{2000}\)

\(3B=3\cdot\left(1+3+3^2+...+3^{2000}\right)\)

\(3B=3+3^2+...+3^{2001}\)

\(3B-B=3+3^2+3^3+...+3^{2001}-1-3-3^2-...-3^{2000}\)

\(2B=3^{2001}-1\)

\(B=\dfrac{3^{2001}-1}{2}\)

2) \(C=1+4+4^2+...+4^{100}\)

\(4C=4\cdot\left(1+4+4^2+...+4^{100}\right)\)

\(4C=4+4^2+4^3+...+4^{101}\)

\(4C-C=4+4^2+4^3+...+4^{201}-1-4-4^2-....-4^{100}\)

\(3C=4^{101}-1\)

\(C=\dfrac{4^{101}-1}{3}\)

Bình luận (2)
H9
5 tháng 10 2023 lúc 19:02

Mình cho bạn công thức tổng quát để sau này tiện áp dụng nhé:

\(A=1+a^1+a^2+...+a^n\)

\(\Rightarrow A=\dfrac{a^{n+1}-1}{a-1}\)

Bình luận (0)

Các câu hỏi tương tự
PN
Xem chi tiết
NA
Xem chi tiết
TP
Xem chi tiết
DN
Xem chi tiết
LA
Xem chi tiết
MC
Xem chi tiết
NK
Xem chi tiết
PH
Xem chi tiết
NN
Xem chi tiết