LZ
NT

e: \(\dfrac{tanx+tany}{cotx+coty}=\dfrac{\dfrac{sinx}{cosx}+\dfrac{siny}{cosy}}{\dfrac{cosx}{sinx}+\dfrac{cosy}{siny}}\)

\(=\dfrac{sinx\cdot cosy+cosx\cdot siny}{cosx\cdot cosy}:\dfrac{siny\cdot cosx+sinx\cdot cosy}{sinx\cdot siny}\)

\(=\dfrac{sinx}{cosx}\cdot\dfrac{siny}{cosy}=tanx\cdot tany\)

b: \(\dfrac{tanx}{sinx}-\dfrac{sinx}{cotx}=\dfrac{sinx}{cosx\cdot sinx}-sinx:\dfrac{cosx}{sinx}\)

\(=\dfrac{1}{cosx}-\dfrac{sin^2x}{cosx}=\dfrac{1-sin^2x}{cosx}=\dfrac{cos^2x}{cosx}=cosx\)

c: \(\dfrac{tanx}{1-tan^2x}\cdot\dfrac{cot^2x-1}{cotx}\)

\(=\dfrac{tanx}{1-\left(\dfrac{sinx}{cosx}\right)^2}\cdot\dfrac{\left(\dfrac{cosx}{sinx}\right)^2-1}{cotx}\)

\(=\dfrac{tanx}{cotx}\cdot\dfrac{\dfrac{cos^2x}{sin^2x}-1}{1-\dfrac{sin^2x}{cos^2x}}=\dfrac{tanx}{cotx}\cdot\dfrac{\dfrac{cos^2x-sin^2x}{sin^2x}}{\dfrac{cos^2x-sin^2x}{cos^2x}}\)

\(=\dfrac{tanx}{cotx}\cdot\left(\dfrac{cos^2x-sin^2x}{sin^2x}\cdot\dfrac{cos^2x}{cos^2x-sin^2x}\right)\)

\(=\dfrac{tanx}{cotx}\cdot\dfrac{cos^2x}{sin^2x}=\left(\dfrac{sinx}{cosx}:\dfrac{cosx}{sinx}\right)\cdot\dfrac{cos^2x}{sin^2x}\)

\(=\dfrac{sin^2x}{cos^2x}\cdot\dfrac{cos^2x}{sin^2x}=1\)

Bình luận (0)

Các câu hỏi tương tự
HN
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết