a: \(\dfrac{\dfrac{1}{2023}+\dfrac{1}{2024}-\dfrac{1}{2025}}{\dfrac{5}{2023}+\dfrac{5}{2024}-\dfrac{5}{2025}}-\dfrac{\dfrac{2}{2022}+\dfrac{2}{2023}-\dfrac{2}{2024}}{\dfrac{3}{2022}+\dfrac{3}{2023}-\dfrac{3}{2024}}\)
\(=\dfrac{\dfrac{1}{2023}+\dfrac{1}{2024}-\dfrac{1}{2025}}{5\left(\dfrac{1}{2023}+\dfrac{1}{2024}-\dfrac{1}{2025}\right)}-\dfrac{2\left(\dfrac{1}{2022}+\dfrac{1}{2023}-\dfrac{1}{2024}\right)}{3\left(\dfrac{1}{2022}+\dfrac{1}{2023}-\dfrac{1}{2024}\right)}\)
\(=\dfrac{1}{5}-\dfrac{2}{3}=\dfrac{3}{15}-\dfrac{10}{15}=-\dfrac{7}{15}\)
b: \(\left(\dfrac{1,5+1-0,75}{2,5+\dfrac{5}{3}-1,25}+\dfrac{0,375-0,3+\dfrac{3}{11}+\dfrac{3}{12}}{-0,625+0,5-\dfrac{5}{11}-\dfrac{5}{12}}\right):\dfrac{1890}{2005}+115\)
\(=\left(\dfrac{\dfrac{3}{2}+\dfrac{3}{3}-\dfrac{3}{4}}{\dfrac{5}{2}+\dfrac{5}{3}-\dfrac{5}{4}}+\dfrac{\dfrac{3}{8}-\dfrac{3}{10}+\dfrac{3}{11}+\dfrac{3}{12}}{-\dfrac{5}{8}+\dfrac{5}{10}-\dfrac{5}{11}-\dfrac{5}{12}}\right):\dfrac{1890}{2005}+115\)
\(=\left(\dfrac{3\left(\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}\right)}{5\left(\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}\right)}-\dfrac{3\left(\dfrac{1}{8}-\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}\right)}{5\left(\dfrac{1}{8}-\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}\right)}\right):\dfrac{1890}{2005}+115\)
\(=\left(\dfrac{3}{5}-\dfrac{3}{5}\right)\cdot\dfrac{2005}{1890}+115=115\)
c: \(\dfrac{\dfrac{1}{9}-\dfrac{1}{7}-\dfrac{1}{11}}{\dfrac{4}{9}-\dfrac{4}{7}-\dfrac{4}{11}}+\dfrac{0,6-\dfrac{3}{25}-\dfrac{3}{125}-\dfrac{3}{625}}{\dfrac{4}{5}-0,16-\dfrac{4}{125}-\dfrac{4}{625}}\)
\(=\dfrac{\dfrac{1}{9}-\dfrac{1}{7}-\dfrac{1}{11}}{4\left(\dfrac{1}{9}-\dfrac{1}{7}-\dfrac{1}{11}\right)}+\dfrac{3\left(\dfrac{1}{5}-\dfrac{1}{25}-\dfrac{1}{125}-\dfrac{1}{625}\right)}{4\left(\dfrac{1}{5}-\dfrac{1}{25}-\dfrac{1}{125}-\dfrac{1}{625}\right)}\)
\(=\dfrac{1}{4}+\dfrac{3}{4}=\dfrac{4}{4}=1\)
d: \(564\cdot\left(\dfrac{12+\dfrac{12}{7}-\dfrac{12}{25}-\dfrac{12}{71}}{4+\dfrac{4}{7}-\dfrac{4}{25}-\dfrac{4}{71}}:\dfrac{3+\dfrac{3}{13}+\dfrac{3}{19}+\dfrac{3}{101}}{5+\dfrac{5}{13}+\dfrac{5}{19}+\dfrac{5}{101}}\right)\)
\(=564\cdot\left(\dfrac{12\left(1+\dfrac{1}{7}-\dfrac{1}{25}-\dfrac{1}{71}\right)}{4\left(1+\dfrac{1}{7}-\dfrac{1}{25}-\dfrac{1}{71}\right)}:\dfrac{3\left(1+\dfrac{1}{13}+\dfrac{1}{19}+\dfrac{1}{101}\right)}{5\left(1+\dfrac{1}{13}+\dfrac{1}{19}+\dfrac{1}{101}\right)}\right)\)
\(=564\cdot\left(3:\dfrac{3}{5}\right)=564\cdot5=2820\)