a+b+c=2023
=>a+b=2023-c; b+c=2023-a; a+c=2023-b
\(A=\dfrac{b+c}{a}+\dfrac{a+c}{b}+\dfrac{a+b}{c}\)
\(=\dfrac{2023-a}{a}+\dfrac{2023-b}{b}+\dfrac{2023-c}{c}\)
\(=\dfrac{2023}{a}+\dfrac{2023}{b}+\dfrac{2023}{c}-\dfrac{a}{a}-\dfrac{b}{b}-\dfrac{c}{c}\)
\(=2023\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)-3\)
\(=2023\cdot\dfrac{1}{2023}-3\)
=1-3
=-2