H(x)=P(x)/Q(x)
\(=\dfrac{\left(x^2-1\right)\left(x^2-4\right)}{\left(x-2\right)\left(x+1\right)}=\left(x+2\right)\left(x-1\right)\)
H(1)=0
=>Chọn B
Đúng 2
Bình luận (0)
Ta có: \(H\left(x\right)\cdot Q\left(x\right)=P\left(x\right)\Rightarrow H\left(x\right)=P\left(x\right):Q\left(x\right)\)
\(=\left(x^4-5x^2+4\right):\left(x^2-x-2\right)\)
\(=x^2+x-2\)
Vậy \(H\left(x\right)=x^2+x-2\)
Ta có: \(H\left(1\right)=1^2+1-2=0\)
⇒ B
Đúng 1
Bình luận (0)