a: \(P\left(x\right)=\left(2x^3-2x^3\right)+\left(x^2+3x^2-4x^2\right)+\left(-3x\right)+5+1=-3x+6\)
b: P(0)=6
P(-1)=9
P(1/3)=-1+6=5
c: Để P(x)=0 thì -3x+6=0
hay x=2
để P(x)=1 thì -3x+6=1
=>-3x=-7
hay x=7/3
a.\(P\left(x\right)=-3x+6\)
b.
\(P\left(0\right)=-3.0+6=6\)
\(P\left(-1\right)=-3.-1+6=3+6=9\)
\(P\left(\dfrac{1}{3}\right)=-3.\dfrac{1}{3}+6=-1+6=5\)
c.
*\(P\left(x\right)=0\)
\(\Rightarrow-3x+6=0\)
\(-3x=-6\)
\(x=2\)
*\(P\left(x\right)=1\)
\(\Rightarrow-3x+6=1\)
\(-3x=-7\)
\(x=\dfrac{7}{3}\)
a. P(x) = 2x3 + x2 + 5 - 3x +3x - 2x3 - 4x2 + 1
= (2x3 - 2x3 ) + (-4x2 + x2) + (-3x + 3x) + 5 + 1
= 0 - 3x2 + 0 + 6
= -3x2 + 6
b.+) Nếu x = 0 thì
P(0) = -3 . 02 + 6
= -3 . 0 + 6
= 0 + 6 = 6
+) Nếu x = -1 thì
P(-1) = -3 . (-1)2 + 6
= -3 + 6 = 3
+) Nếu x = \(\dfrac{1}{3}\) thì:
P(\(\dfrac{1}{3}\)) = -3 . \(\left(\dfrac{1}{3}\right)\)2 + 6
= -3 . \(\dfrac{1}{9}\) + 6
= \(\dfrac{-1}{3}+\dfrac{18}{3}\) = \(\dfrac{17}{3}\)