a: \(=\lim\limits_{x\rightarrow+\infty}x^4\left[1-\dfrac{1}{x^2}+\dfrac{1}{x^3}-\dfrac{1}{x^4}\right]=+\infty\)
b: \(\lim\limits_{x->-\infty}f\left(x\right)\)
\(=\lim\limits_{x\rightarrow-\infty}\left[x^3\left(-2+\dfrac{3}{x}-\dfrac{5}{x^3}\right)\right]=+\infty\)
c: \(=\lim\limits_{x\rightarrow-\infty}-x\cdot\sqrt{1-\dfrac{2}{x}+\dfrac{5}{x^2}}=+\infty\)
d: \(=\lim\limits_{x\rightarrow+\infty}\dfrac{\sqrt{1+\dfrac{1}{x^2}}+1}{\dfrac{5}{x}-2}=\dfrac{1+1}{-2}=-1\)