1.2a) \(x+y+z=0\Rightarrow\dfrac{x+y+z}{xyz}=0\Rightarrow\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}=0\)
\(\Rightarrow\dfrac{2}{xy}+\dfrac{2}{yz}+\dfrac{2}{zx}=0\)
\(\Rightarrow\sqrt{\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}}=\sqrt{\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}+\dfrac{2}{xy}+\dfrac{2}{yz}+\dfrac{2}{zx}}\)
\(=\sqrt{\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2}=\left|\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right|\)
Ta có: \(\sqrt{\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}}\)
\(=\sqrt{\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}+2\left(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{xz}\right)-2\left(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{xz}\right)}\)
\(=\sqrt{\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2}=\left|\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right|\)
b.
Xét: \(\sqrt{1+\dfrac{1}{n^2}+\dfrac{1}{\left(n+1\right)^2}}=\sqrt{\dfrac{n^2\left(n+1\right)^2+n^2+\left(n+1\right)^2}{n^2\left(n+1\right)^2}}\)
\(=\sqrt{\dfrac{\left[n\left(n+1\right)\right]^2+n^2+n^2+2n+1}{n^2\left(n+1\right)^2}}=\sqrt{\dfrac{\left[n\left(n+1\right)\right]^2+2n\left(n+1\right)+1}{n^2\left(n+1\right)^2}}\)
\(=\sqrt{\dfrac{\left[n\left(n+1\right)+1\right]^2}{n^2\left(n+1\right)^2}}=\dfrac{n\left(n+1\right)+1}{n\left(n+1\right)}=1+\dfrac{1}{n\left(n+1\right)}\)
Do đó:
\(A=1+\dfrac{1}{2.3}+1+\dfrac{1}{3.4}+...+1+\dfrac{1}{199.200}\)
\(=198+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{199.200}\)
\(=198+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{199}-\dfrac{1}{200}\)
\(=198+\dfrac{1}{2}-\dfrac{1}{200}=...\)