Tìm a và b (b > -1) để hai bất phương trình sau tương đương :
\(\left(x-a+b\right)\left(x+2a-b-1\right)\le0\)
và
\(\left|x+a-2\right|\le b+1\)
Tìm a và b (b > -1) để hai bất phương trình sau tương đương :
\(\left(x-a+b\right)\left(x+2a-b-1\right)\le0\)
và
\(\left|x+a-2\right|\le b+1\)
a) Vẽ trên cùng một hệ trục tọa độ đồ thị các hàm số sau :
\(y=f\left(x\right)=\left|x+3\right|-1\)
\(y=g\left(x\right)=\left|2x-m\right|\)
trong đó m là tham số
Xác định hoành độ các giao điểm của mỗi đồ thị với trục hoành
b) Tìm các giá trị của tham số m để bất phương trình sau nghiệm đúng với mọi giá trị của x
\(\left|2x-m\right|>\left|x+3\right|-1\)
a)
f(x) giao trục tại hai Điểm có hoành độ x1=-4; x2=-2
g(x) giao trục hoành duy nhất một điểm hoành độ x=m/2
b) f(x) >g(x) => điểm m/2 phải trong khoảng (-4,-2)
\(-4< \dfrac{m}{2}< -2\Leftrightarrow-8< m< -4\)
Trả lời bởi ngonhuminh
\(x-a+b=0\Leftrightarrow x=a-b\)
\(x+2a-b-1=0\Leftrightarrow x=-2a+b+1\)
Nếu \(a-b< -2a+b+1\Leftrightarrow3a-2b< 1\)thì bất phương trình:
\(\left(x-a+b\right)\left(x+2a-b-1\right)\le0\) có tập nghiệm là:
\(a-b\le x\le-2a+b+1\).
Nếu \(a-b>-2a+b+1\Leftrightarrow3a-2b>1\) thì bất phương trình:
\(\left(x-a+b\right)\left(x+2a-b-1\right)\le0\) có nghiệm là:
Trả lời bởi Bùi Thị Vân\(-2a+b+1< x< a-b\).
- Do b > -1 nên BPT \(\left|x+a-2\right|\le b+1\) có nghiệm là:
\(-a-b+1\le x\le b-a+3\)
- Ta xét hai trường hợp:
TH1: \(3a-2b< 1\)
Hai BPT tương đương khi \(\left\{{}\begin{matrix}a-b=-a-b-1\\-2a+b+1=b-a+3\end{matrix}\right.\) (vô nghiệm).
TH2: \(3a-2b>1\)(*)
Hai BPT tương đương khi: \(\left\{{}\begin{matrix}-2a+b+1=-a-b+1\\a-b=b-a+3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=3\\b=\dfrac{3}{2}\end{matrix}\right.\) (thỏa mãn * )
Vậy \(\left\{{}\begin{matrix}a=3\\b=\dfrac{3}{2}\end{matrix}\right.\) thì hai BPT tương đương.