Ôn tập chương IV

SK

Tìm a và b (b > -1) để hai bất phương trình sau tương đương :

                     \(\left(x-a+b\right)\left(x+2a-b-1\right)\le0\)

 và 

                      \(\left|x+a-2\right|\le b+1\)

BV
13 tháng 4 2017 lúc 20:32

\(x-a+b=0\Leftrightarrow x=a-b\)
\(x+2a-b-1=0\Leftrightarrow x=-2a+b+1\)
Nếu \(a-b< -2a+b+1\Leftrightarrow3a-2b< 1\)thì bất phương trình:
\(\left(x-a+b\right)\left(x+2a-b-1\right)\le0\) có tập nghiệm là:
\(a-b\le x\le-2a+b+1\).
Nếu \(a-b>-2a+b+1\Leftrightarrow3a-2b>1\) thì bất phương trình:

\(\left(x-a+b\right)\left(x+2a-b-1\right)\le0\) có nghiệm là:
\(-2a+b+1< x< a-b\).
- Do b > -1 nên BPT \(\left|x+a-2\right|\le b+1\) có nghiệm là:
\(-a-b+1\le x\le b-a+3\)
- Ta xét hai trường hợp:
TH1: \(3a-2b< 1\)
Hai BPT tương đương khi \(\left\{{}\begin{matrix}a-b=-a-b-1\\-2a+b+1=b-a+3\end{matrix}\right.\) (vô nghiệm).
TH2: \(3a-2b>1\)(*)
Hai BPT tương đương khi: \(\left\{{}\begin{matrix}-2a+b+1=-a-b+1\\a-b=b-a+3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=3\\b=\dfrac{3}{2}\end{matrix}\right.\) (thỏa mãn * )
Vậy \(\left\{{}\begin{matrix}a=3\\b=\dfrac{3}{2}\end{matrix}\right.\) thì hai BPT tương đương.

Bình luận (0)
H24
14 tháng 4 2017 lúc 11:05

\(\left(x-a+b\right)\left(x+2a-b-1\right)\le0\)(1)

\(\left|x+a-2\right|\le b+1\) (2)

Lời giải (khác)

\(b>-1\Leftrightarrow b+1>0\)

\(\left(2\right)\Leftrightarrow\left(x+a-2\right)^2\le\left(b+1\right)^2\)

\(\Leftrightarrow\left(x+a-2\right)^2-\left(b+1\right)^2\le0\)

\(\Leftrightarrow\left[\left(x+a-2\right)-\left(b+1\right)\right]\left[\left(x+a-2\right)+\left(b+1\right)\right]\le0\)

\(\Leftrightarrow\left(x+a-b-3\right)\left(x+a+b-1\right)\le0\)

Để \(\left(1\right)\Leftrightarrow\left(2\right)\Rightarrow\) a,b cần thỏa mãn :

\(\left[{}\begin{matrix}\left(I\right)\left\{{}\begin{matrix}-a+b=a-b-3\\2a-b-1=a+b-1\end{matrix}\right.\\\left(II\right)\left\{{}\begin{matrix}-a+b=a+b-1\\2a-b-1=a-b-3\end{matrix}\right.\end{matrix}\right.\)
(I)\(\Leftrightarrow\) \(\left\{{}\begin{matrix}2a-2b=3\\a-2b=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=3\\b=\dfrac{3}{2}\end{matrix}\right.\)

(II)\(\Leftrightarrow\) \(\left\{{}\begin{matrix}2a=-1\\a=-3\end{matrix}\right.\) vô No

Kết luận

Cặp a,b duy nhất thủa mãn là: (a,b)=(3,3/2)

Bình luận (0)

Các câu hỏi tương tự
SK
Xem chi tiết
TN
Xem chi tiết
SA
Xem chi tiết
JV
Xem chi tiết
TA
Xem chi tiết
SK
Xem chi tiết
H24
Xem chi tiết
NR
Xem chi tiết
SA
Xem chi tiết