Ôn tập chương IV

SK
Hướng dẫn giải Thảo luận (1)
SK
Hướng dẫn giải Thảo luận (1)

Do b là cạnh của tam giác nên b > 0

Đặt \(f\left(x\right)=b^2x^2-\left(b^2+c^2-a^2\right)x+c^2>0,\forall x\)

Theo định lý của dấu về tam thức bậc 2

\(\Rightarrow\left\{{}\begin{matrix}b^2>0\left(đúng\right)\\\Delta< 0\end{matrix}\right.\)\(\Rightarrow\Delta< 0\)

\(\Leftrightarrow\Delta=\left(b^2+c^2-a^2\right)^2-4b^2c^2< 0\)

Chứng minh rằng \(\Delta=\left(b^2+c^2-a^2\right)^2-4b^2c^2< 0\)

\(\Leftrightarrow\left(b^2+c^2-a^2\right)^2< 4b^2c^2\)

\(\Leftrightarrow b^2+c^2-a^2< 2bc\)

\(\Leftrightarrow b^2-2bc+c^2< a^2\)

\(\Leftrightarrow\left(b-c\right)^2< a^2\)

\(\Leftrightarrow b-c< a\)

\(\Leftrightarrow b< c+a\)

Theo bất đẳng thức tam giác thì \(b< c+a\)

\(\Rightarrow\)\(\Delta=\left(b^2+c^2-a^2\right)^2-4b^2c^2< 0\) ( đpcm )

Vậy \(f\left(x\right)=b^2x^2-\left(b^2+c^2-a^2\right)x+c^2>0,\forall x\)

Trả lời bởi Kuro Kazuya
SK
Hướng dẫn giải Thảo luận (1)

Giải bài 13 trang 107 SGK Đại Số 10 | Giải toán lớp 10

Vẽ trên cùng một hệ trục tọa độ các đường thẳng

Δ : 3x + y = 9

Δ1 : x - y + 3 = 0

Δ2 : x + 2y = 8

Δ3 : y = 6

Trả lời bởi Nguyễn Đắc Định
SK
Hướng dẫn giải Thảo luận (1)

Xét vế trái: \(\left(x^2-y^2\right)^2=\left(x-y\right)^2\left(x+y\right)^2\)
Giả sử \(\left(x-y\right)^2\left(x+y\right)^2\ge4xy\left(x-y\right)^2\)
\(\Leftrightarrow\left(x-y\right)^2\left[\left(x+y\right)^2-4xy\right]\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\left(x-y\right)^2\ge0\)
\(\Leftrightarrow\left(x-y\right)^4\ge0\) (luôn đúng với mọi x, y).
Suy ra điều phải chứng minh.

Trả lời bởi Bùi Thị Vân
SK
Hướng dẫn giải Thảo luận (1)

Ta có : \(x^2+2y^2+2xy+y+1\)

\(=\left(x^2+2xy+y^2\right)+\left(y^2+y+\dfrac{1}{4}\right)+\dfrac{3}{4}\)

\(=\left(x+y\right)^2+\left(y+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x,y\)

Trả lời bởi Nguyễn Đắc Định
SK
Hướng dẫn giải Thảo luận (1)

Áp dụng BĐT Cauchy cho 2 số dương ta có:
\(a+1\ge2\sqrt{a}\)
\(b+1\ge2\sqrt{b}\)
\(a+c\ge2\sqrt{ac}\)
\(b+c\ge2\sqrt{bc}\)
Nhân vế theo vế các BĐT cùng chiều trên ta được:
\(\left(a+1\right)\left(b+1\right)\left(a+c\right)\left(b+c\right)\ge16\sqrt{a^2b^2c^2}=16abc\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=1\\c=a\\b=c\end{matrix}\right.\)
<=> a = b = c = 1
Vậy \(\left(a+1\right)\left(b+1\right)\left(a+c\right)\left(b+c\right)\ge16abc\) với a,b,c dương.
Dấu "=" xảy ra khi a=b=c=1

Trả lời bởi Hương Yangg
SK
Hướng dẫn giải Thảo luận (1)

Áp dụng bất đẳng thức Cauchy - Schwarz

\(\Rightarrow\left\{{}\begin{matrix}a^2b+\dfrac{1}{b}\ge2\sqrt{\dfrac{a^2b}{b}}=2a\\b^2c+\dfrac{1}{c}\ge2\sqrt{\dfrac{b^2c}{c}}=2b\\c^2a+\dfrac{1}{a}\ge2\sqrt{\dfrac{c^2a}{a}}=2c\end{matrix}\right.\)

\(\Rightarrow a^2b+b^2c+c^2a+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge2\left(a+b+c\right)\)

\(\Rightarrow\dfrac{1}{2}\left(a^2b+b^2c+c^2a+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge a+b+c\) ( đpcm )

Dấu " = " xảy ra khi \(a=b=c=1\)

Trả lời bởi Kuro Kazuya
SK
Hướng dẫn giải Thảo luận (1)

Lời giải

a) c/m \(f\left(x\right)=x^2-ax-3bc+\dfrac{a^2}{3}>0\forall x\)

\(\Delta_{x_{a,b,c}}=a^2+12bc-\dfrac{4}{3}a^2=\dfrac{-a^2+36bc}{3}\)

\(\Delta=\dfrac{-a^3+36}{3a}\)

\(a^3>36\Rightarrow\left\{{}\begin{matrix}a>0\\-a^3+36< 0\end{matrix}\right.\) \(\Rightarrow\dfrac{-36a^3+36}{3a}< 0\)

\(\Rightarrow\) F(x) vô nghiệm => f(x)>0 với x => dpcm

b)

\(\dfrac{a^2}{3}+b^2+c^2>ab+bc+ca\)\(\Leftrightarrow\dfrac{a^2}{3}+b^2+c^2-ab-bc-ac>0\)

\(\Leftrightarrow\left(b+c\right)^2-a\left(b+c\right)-3bc+\dfrac{a^2}{3}>0\)

Từ (a) =>\(f\left(b+c\right)=\left(b+c\right)^2-a\left(b+c\right)-3bc+\dfrac{a^2}{3}>0\) => dccm

Trả lời bởi ngonhuminh
SK
Hướng dẫn giải Thảo luận (1)

Điều kiện xác định \(x\ge0\).
Do \(\sqrt{x}\ge0\) với mọi \(x\ge0\) nên BPT có nghiệm khi:
\(m-1\le0\Leftrightarrow m\le1\).
vậy ta có các trường hợp sau:
- Nếu \(m\le1\) bất phương trình nghiệm đúng với mọi \(x\ge0\).
- Nếu \(m>1\) bất phương trình vô nghiệm.

Trả lời bởi Bùi Thị Vân
SK
Hướng dẫn giải Thảo luận (1)

Vì phương trình \(\left(x-2a+b-1\right)\left(x+a-2b+1\right)=0\) có hai nghiệm là: \(x=2a-b+1;x=-a+2b-1\).
Ta xét hai trường hợp:
TH1: \(\left\{{}\begin{matrix}2a-b+1=0\\-a+2b-1=2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{3}\\b=\dfrac{5}{3}\end{matrix}\right.\).
TH2: \(\left\{{}\begin{matrix}2a-b+1=2\\-a+2b-1=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=1\end{matrix}\right.\)
Vậy \(\left(a,b\right)=\left(\dfrac{1}{3};\dfrac{5}{3}\right)\) hoặc \(\left(a,b\right)=\left(1;1\right)\) thì BPT có tập nghiệm là đoạn [0;2].

Trả lời bởi Bùi Thị Vân