Bài 4: Tính chất ba đường trung tuyến của tam giác

SK
Hướng dẫn giải Thảo luận (1)

a) DE // AB, DE = \(\dfrac{1}{2}\)AB, IK // AB, IK = \(\dfrac{1}{2}\)AB

=> DE//IK và DE = IK

b) Xét tg GDE và tg GIK có:

DE = IK (cmt)

GDE = GIK (slt)

GED = GKI (slt)

=> tg GDE = tg GIK (g.c.g)

=> GD = GI ( c.t.ứ)

Có GD = GI = IA nên AG = \(\dfrac{2}{3}\)AD

Trả lời bởi ๖ۣۜDũng™♛
SK
Hướng dẫn giải Thảo luận (1)

Xét ΔACD có

CB là đường trung tuyến

CE=2/3CB

Do đó: E là trọng tâm của ΔACD

=>AE là đường trung tuyến ứng với cạnh DC

=>K là trung điểm của CD

Trả lời bởi Nguyễn Lê Phước Thịnh
SK
Hướng dẫn giải Thảo luận (1)
SK
Hướng dẫn giải Thảo luận (1)

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

a. Xét ΔAMC và ΔBMD, ta có:

BM = MC (gt)

∠(AMB) = ∠(BMC) (đối đỉnh)

AM = MD (gt)

Suy ra: ΔAMC = ΔDMB (c.g.c)

⇒ ∠(MAC) = ∠D (2 góc tương ứng)

Suy ra: AC // BD

(vì có 2 góc ở vị trí so le trong bằng nhau)

Mà AB ⊥ AC (gt) nên AB ⊥ BD.

Vậy (ABD) = 90o

b. Xét ΔABC và ΔBAD ta có:

AB cạnh chung

∠(BAC) = ∠(ABD) = 90o

AC = BD (vì ΔAMC = ΔDMB)

Suy ra: ΔABC = ΔBAD (c.g.c)

c. Ta có: ΔABC = ΔBAD ⇒ BC = AD (2 cạnh tương ứng)

Mặt khác: AM = 1/2 AD

Vậy AM = 1/2 BC.

Trả lời bởi Phạm Thảo Vân
SK
Hướng dẫn giải Thảo luận (1)
SK
Hướng dẫn giải Thảo luận (1)

Gọi O là giao điểm của AB và CD

=>O là trung điểm chng của AB và CD

Xét ΔACD có 

AO là đường trung tuyến

CE là đường trung tuyến

AO cắt CE tại I

Do đó: I là trọng tâm

=>AI=2/3AO=1/3AB(1)

Xét ΔCBD có 

BO là đường trung tuyến

CF là đường trung tuyến

BO cắt CF tại J

Do đó; J là trọng tâm

=>BJ=2/3BO=1/3BA(2)

Từ (1) và (2) suy ra AI=BJ=1/3AB=JI

 

Trả lời bởi Nguyễn Lê Phước Thịnh
SK
Hướng dẫn giải Thảo luận (1)

 

Hình vẽ:

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

Xét sáu tam giác được đánh số là: 1, 2, 3, 4, 5, 6

Vì G là trọng tâm nên ta có: 

\(S_{GAB}=S_{GBC}=S_{GCA}=\dfrac{1}{3}S_{ABC}\)

Ta lại có \(S_1=S_2;S_3=S_4;S_5=S_6\) (vì mỗi cặp tam giác có chung đường cao và hai đáy bằng nhau, vậy sáu tam giác 1, 2, 3, 4, 5, 6 có diện tích bằng nhau)

Trả lời bởi Nguyễn Lê Phước Thịnh
SK
Hướng dẫn giải Thảo luận (1)

Giải

a) Do AD = DE nên MD là một đường trung tuyến của tam giác AEM. Hơn nữa do

CD=12CB=12CMCD=12CB=12CM

Nên C là trọng tâm của tam giá AEM.

b) Các đường thẳng AC, EC lần lượt cắt EM, AM tại F, I. Tam giác AEM có các đường trung tuyến là AF, EI, MD. Ta có ∆ADB = ∆EDG (c.g.c) nên AB = EC

Vậy: AC=23AF;BC=CM=23MD;AB=EC=23EIAC=23AF;BC=CM=23MD;AB=EC=23EI

c) Trước tiên, theo giả thiết, ta có AD = DE nên AD=12AEAD=12AE

Gọi BP, CQ là các trung tuyến của ∆ABC.

∆BCP = ∆MCF => BP=FM=12EMBP=FM=12EM. Ta sẽ chứng minh CQ=12AMCQ=12AM

Ta có:

ΔABD=ΔECD⇒ˆBAD=ˆCED⇒AB//EC⇒ˆQAC=ˆICAΔABD=ΔECD⇒BAD^=CED^⇒AB//EC⇒QAC^=ICA^

Hai tam giác ACQ và CAI có cạnh AC chung, ˆQAC=ˆICAQAC^=ICA^;

AQ=12AB=12EC=ICAQ=12AB=12EC=IC nên chúng bằng nhau.

Vậy CQ=AI=12AMCQ=AI=12AM.

Tóm lại: AD=12AE,BP=12EM,CQ=12AM

Trả lời bởi Kudo Shinichi
SK
Hướng dẫn giải Thảo luận (1)

Xét ΔABC có các đường trung tuyến \(AA_1;BB_1\) cắt nhau tại O

nên O là trọng tâm

=>AO=2/3AA1

\(\Leftrightarrow S_{AA_1B}=\dfrac{2}{3}S_{AOB}\)

\(\Leftrightarrow S_{ABC}=3\cdot S_{AOB}=15\left(cm^2\right)\)

Trả lời bởi Nguyễn Lê Phước Thịnh
SK
Hướng dẫn giải Thảo luận (1)

Ta có: ΔMAB cân tại M

nên \(\widehat{MAB}=\widehat{B}\)

Ta có: ΔMAC cân tại M

nên \(\widehat{MAC}=\widehat{C}\)

Xét ΔABC có \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)

\(\Leftrightarrow2\cdot\left(\widehat{MAB}+\widehat{MAC}\right)=180^0\)

hay \(\widehat{BAC}=90^0\)

Trả lời bởi Nguyễn Lê Phước Thịnh