Bài 4: Tính chất ba đường trung tuyến của tam giác

SK

Theo kết quả của bài 64 chương II, phần Hình học, SBT Toán 7 một ta có :

Đoạn thẳng nối trung điểm hai cạnh của một tam giác thì song song với cạnh thứ ba và bằng nửa cạnh ấy

Vận dụng kết quả trên để giải bài toán sau : Cho tam giác ABC, đường trung tuyến AD. Kẻ đường trung tuyến BE cắt AD ở G. Gọi I, K theo thứ tự là trung điểm của GA, GB. Chứng minh rằng :

a) IK // DE, IK = DE

b) \(AG=\dfrac{2}{3}AD\)

H24
20 tháng 8 2017 lúc 21:16

a) DE // AB, DE = \(\dfrac{1}{2}\)AB, IK // AB, IK = \(\dfrac{1}{2}\)AB

=> DE//IK và DE = IK

b) Xét tg GDE và tg GIK có:

DE = IK (cmt)

GDE = GIK (slt)

GED = GKI (slt)

=> tg GDE = tg GIK (g.c.g)

=> GD = GI ( c.t.ứ)

Có GD = GI = IA nên AG = \(\dfrac{2}{3}\)AD

Bình luận (1)

Các câu hỏi tương tự
SK
Xem chi tiết
HN
Xem chi tiết
HL
Xem chi tiết
SK
Xem chi tiết
TN
Xem chi tiết
LQ
Xem chi tiết
ND
Xem chi tiết
SK
Xem chi tiết
TN
Xem chi tiết