Bài 4: Liên hệ giữa phép chia và phép khai phương

SK
Hướng dẫn giải Thảo luận (1)

a,\(ab^2\sqrt{\dfrac{3}{a^2b^4}}=ab^2.\dfrac{\sqrt{3}}{\sqrt{a^2b^4}}=ab^2.\dfrac{\sqrt{3}}{ab^2}=\sqrt{3}\)

b,\(\sqrt{\dfrac{27\left(a-3\right)^2}{48}}=\dfrac{3\sqrt{3}\left(a-3\right)}{4\sqrt{3}}=\dfrac{3}{4}\left(a-3\right)\)

c,\(\sqrt{\dfrac{9+12a+4a^2}{b^2}}=\dfrac{\sqrt{\left(3+2a\right)^2}}{\sqrt{b^2}}=\dfrac{3+2a}{b}\)

d, \(\left(a-b\right).\sqrt{\dfrac{ab}{\left(a-b\right)^2}}=\left(a-b\right).\dfrac{\sqrt{ab}}{\sqrt{\left(a-b\right)^2}}=\left(a-b\right).\dfrac{\sqrt{ab}}{\left(a-b\right)}=\sqrt{ab}\)

Trả lời bởi ¨°o.O♫♀¤♪ Zin Phan ♪¤♂♫O...
SK
Hướng dẫn giải Thảo luận (1)

a) Đúng

b) Sai. Số âm không có căn bậc hai.

c) Đúng vì .

d) Đúng vì do đó

Trả lời bởi qwerty
SK
Hướng dẫn giải Thảo luận (2)

a. \(\sqrt{\dfrac{63y^3}{7y}}\)=\(\sqrt{9y^2}\)=3y

b.\(\sqrt{\dfrac{48x^3}{3x^5}}\)=\(\sqrt{16\cdot\dfrac{1}{X^2}}\)= \(\sqrt{16}\cdot\sqrt{\dfrac{1}{X^2}}\)=\(4\cdot\dfrac{1}{X}=\dfrac{4}{X}\)

c.\(\sqrt{\dfrac{45mn^2}{20m}}=\sqrt{\dfrac{9n^2}{4}}=\dfrac{\sqrt{9n^2}}{\sqrt{4}}=\dfrac{3n}{2}\)

d. \(\sqrt{\dfrac{16a^4b^6}{128a^6b^6}}=\sqrt{\dfrac{1}{8a^2}}=\dfrac{1}{2\sqrt{2}a}\)

Trả lời bởi Anh Lê Hồ Lan
SK
Hướng dẫn giải Thảo luận (1)

a) HD: Đổi hỗn số và số thập phân thành phân số.

ĐS: .

b) =

= = =

= .

d) ĐS: .

Trả lời bởi qwerty
SK
Hướng dẫn giải Thảo luận (2)

Nếu n= 2, tức có hai giá trị x1x2, và từ giả thiết ở trên, ta có:

điều phải chứng minh - ở đây \(x_1=a;x_2=b\)

Trả lời bởi Đức Minh
SK
Hướng dẫn giải Thảo luận (1)
SK
Hướng dẫn giải Thảo luận (3)

Giá trị của \(\sqrt{\dfrac{49}{0.09}}\) bằng :

(A) \(\dfrac{7}{3}\) (B) \(\dfrac{70}{3}\) (C) \(\dfrac{7}{30}\) (D)\(\dfrac{700}{3}\)

Trả lời bởi Nhật Linh
SK
Hướng dẫn giải Thảo luận (1)

Cả 2 vế đều không âm nên bình phương hai vế ta được bất đẳng thức tương đương. Điều phải chứng minh tương đương với:

\(\dfrac{a+b}{2}\ge\dfrac{a+2\sqrt{ab}+b}{4}\)

\(\Leftrightarrow\dfrac{a+b}{2}-\dfrac{a+2\sqrt{ab}+b}{4}\ge0\)

\(\Leftrightarrow\dfrac{a-2\sqrt{ab}+b}{4}\ge0\)

\(\Leftrightarrow\dfrac{\left(\sqrt{a}\right)^2-2\sqrt{a}\sqrt{b}+\left(\sqrt{b}\right)^2}{4}\ge0\)

\(\Leftrightarrow\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2}{4}\ge0\)

Bất đẳng thức cuối cùng luôn đúng.

Trả lời bởi Giáo viên Toán
SK
Hướng dẫn giải Thảo luận (1)

Căn bậc hai. Căn bậc ba

Nếu có thêm điều kiện \(y>1\) thì kết quả là \(\dfrac{1}{x-1}\)

Trả lời bởi Nguyen Thuy Hoa
SK
Hướng dẫn giải Thảo luận (2)

a) \(\sqrt{\left(x-3\right)^2}=9\)

\(\Leftrightarrow\sqrt{\left(x-3\right)^2}^2=9^2\)

\(\Leftrightarrow\left(x-3\right)^2=81\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=9\\x-3=-9\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=12\\x=-6\end{matrix}\right.\)

b) \(\sqrt{4x^2+4x+1}=6\)

\(\Leftrightarrow\sqrt{4x^2+4x+1}^2=6^2\)

\(\Leftrightarrow4x^2+4x+1-36=0\)

\(\Leftrightarrow4x^2+4x-35=0\)

\(\Leftrightarrow4\cdot\left(x-\dfrac{5}{2}\right)\cdot\left(x+\dfrac{7}{2}\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-\dfrac{5}{2}=0\\x+\dfrac{7}{2}=0\end{matrix}\right.\rightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{7}{2}\end{matrix}\right.\)

Trả lời bởi Đức Minh