Bài 4: Cấp số nhân

SK
Hướng dẫn giải Thảo luận (1)

Gọi 4 số cần tìm là \(x,y,z,t\).
Theo tính chất của cấp số nhân ta có:
\(\left\{{}\begin{matrix}\left(y-6\right)^2=\left(x-2\right)\left(z-7\right)\\\left(z-7\right)^2=\left(y-6\right)\left(t-2\right)\end{matrix}\right.\). (1)
Mặt khác 4 số lập thành một cấp số cộng nên:
\(y=x+d;z=x+2d;y=x+3d;t=x+4d\).
Thay vào hệ ta tìm được \(d=7;x=5\).
Vậy 4 số cần tìm là: 5; 12; 19; 26.

Trả lời bởi Bùi Thị Vân
SK
Hướng dẫn giải Thảo luận (1)

Đặt \(u_a=5;u_{a+1};u_{a+2};u_{a+3};u_{a+4};u_{a+5}=160\) với \(u_{a+1};u_{a+2};u_{a+3};u_{a+4}\) là bốn số hạng cần tìm.
Ta có: \(u_{a+5}=u_a.q^5\).
Vì vậy: \(\dfrac{u_{a+5}}{u_a}=q^5=\dfrac{160}{5}=32=2^5\).
Suy ra: \(q=2\).
Suy ra: \(u_{a+1}=u_a.2=5.2=10\); \(u_{a+2}=u_a.2^2=5.4=20\);
\(u_{a+3}=u_a.2^3=5.8=40\); \(u_{a+4}=u_a.2^4=5.16=90\).
Vậy bốn số hạng đó là: \(10;20;40;80\).

Trả lời bởi Bùi Thị Vân
SK
Hướng dẫn giải Thảo luận (1)
SK
Hướng dẫn giải Thảo luận (1)

Gọi 3 số đó là: \(a,b,c\). Theo bài ra ta có:\(\left\{{}\begin{matrix}a+b+c=114\\b^2=ac\end{matrix}\right.\). (*)
Mặt khác nó lần lượt là số hạng thứ nhất, thứ tư và thứ hai mươi lăm của một cấp số cộng nên: \(a=u_1;b=u_1+3d;c=u_1+24d\). ( với \(u_1\) là số hạng đầu của cấp số cộng, d là công sai).
Thay vào (*) ta có:
\(\left\{{}\begin{matrix}u_1+u_1+3d+u_1+24d=114\\\left(u_1+3d\right)^2=u_1\left(u_1+24d\right)\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}u_1+9d=38\\18u_1d-9d^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}u_1+9d=38\\9d\left(2u_1-d\right)=0\end{matrix}\right.\).
Nếu \(d=0\) thì a,b,c là ba số hạng của một cấp số cộng không đổi nên \(a=b=c=\sqrt[3]{114}\).
Nếu \(d\ne0\) suy ra: \(\left\{{}\begin{matrix}u_1+9d=38\\2u_1-d=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}u_1=2\\d=4\end{matrix}\right.\).
Khi đó \(a=2;b=2+3.4=16;c=2+24.3=74\).


Trả lời bởi Bùi Thị Vân
SK
Hướng dẫn giải Thảo luận (2)

a) Gọi q là công sai của cấp số nhân. Ta có: \(a;b=aq;c=aq^2\).
\(a^2b^2c^2\left(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}\right)=\dfrac{b^2c^2}{a}+\dfrac{a^2c^2}{b}+\dfrac{a^2b^2}{c}\)
\(=\dfrac{\left(a.q\right)^2\left(a.q^2\right)^2}{a}+\dfrac{a^2\left(aq^2\right)^2}{aq}+\dfrac{a^2\left(aq\right)^2}{aq^2}\)
\(=\dfrac{a^2q^2a^2q^4}{a}+\dfrac{a^2a^2q^4}{aq}+\dfrac{a^2a^2q^2}{aq^2}\)
\(=a^3q^6+a^3q^3+a^3\)
\(=\left(a^2q\right)^3+\left(aq\right)^3+a^3\)
\(=c^3+b^3+a^3=a^3+b^3+c^3\).

Trả lời bởi Bùi Thị Vân
SK
Hướng dẫn giải Thảo luận (1)

\(f\left(x\right)=ax^3+bx^2+cx+d\)

a,b,c,d lập thành cấp số nhân công bội q \(\Rightarrow\left\{{}\begin{matrix}q\ne\left\{0,1\right\}\\a\ne0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}b=a.q\\c=aq^2\\d=aq^3\end{matrix}\right.\)

\(f\left(x\right)=a.x^3+a.q.x^2+a.q^2.x+a.q^3\)(1)

\(f\left(x\right)=a\left[.x^3+q.x^2+q^2.x+q^3\right]\)

\(f\left(x\right)=a.\left[.x^2\left(x+q\right)+q^2\left(.x+q\right)\right]\)

\(f\left(x\right)=a.\left(x+q\right)\left(x^2+q^2\right)\)

\(\left\{{}\begin{matrix}a,q\ne0\\f\left(x\right)=0\end{matrix}\right.\)\(\Rightarrow x=-q\) là nghiệm duy nhất

Trả lời bởi ngonhuminh