Học tại trường Chưa có thông tin
Đến từ Chưa có thông tin , Chưa có thông tin
Số lượng câu hỏi 29
Số lượng câu trả lời 110
Điểm GP 23
Điểm SP 130

Người theo dõi (13)

HT
H24
KJ
NT
ND

Đang theo dõi (0)


Câu trả lời:

\(\left\{{}\begin{matrix}mx+y=3\\4x+my=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=3-mx\\4x+m\left(3-mx\right)=-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=3-mx\\4x+3m-m^2x+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=3-mx\\\left(4-m^2\right)x+3m+1=0\left(.\right)\end{matrix}\right.\)

+ Hệ pt đã cho có nghiệm duy nhất khi pt (.) có nghiệm duy nhất

\(\Rightarrow4-m^2\ne0\Leftrightarrow m^2\ne4\Leftrightarrow m\ne\pm2\)

Với \(m\ne\pm2\)

\(\left\{{}\begin{matrix}y=3-mx\\\left(4-m^2\right)x=-3m-1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=3-mx\\x=\dfrac{-3m-1}{4-m^2}=\dfrac{3m+1}{m^2-4}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=3-\dfrac{m\left(3m+1\right)}{m^2-4}=\dfrac{-m-12}{m^2-4}\\x=\dfrac{3m+1}{m^2-4}\end{matrix}\right.\)

Vậy hệ pt đã cho có nghiệm duy nhất ( x;y)=\(\left(\dfrac{3m+1}{m^2-4};\dfrac{-m-12}{m^2-4}\right)\)khi m\(\ne\pm2\)

+ Hệ pt có vô số nghiem khi pt (.) có vô số nghiệm

\(\Rightarrow\left\{{}\begin{matrix}4-m^2=0\\3m+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m=2\\m=-2\end{matrix}\right.\\m=\dfrac{-1}{3}\end{matrix}\right.\)( vô lí)

Vậy hpt đã cho không thể có vô số nghiệm

+ Hệ pt vô nghiệm khi pt (.) vô nghiệm

\(\Rightarrow\left\{{}\begin{matrix}4-m^2=0\\3m+1\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m=-2\\m=2\end{matrix}\right.\\m\ne\dfrac{-1}{3}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}m=-2\\m=2\end{matrix}\right.\)

Vậy hpt vô nghiệm khi m=2 hoặc m=-2