Đại số 10

QL
Xem chi tiết
NL
21 tháng 1 2024 lúc 21:08

Nếu hệ điểm 10 thì điều này ko thể xảy ra, tư duy rất đơn giản, vì \(\dfrac{10+5}{2}< 8\)

Còn rút ra điều gì thì chắc là nhường mấy em học sinh lớp đó chứ thực sự mình cũng ko hiểu thông tin này cho biết điều gì. Vì trung bình có thể lớn hơn, nhỏ hơn hoặc bằng trung vị, tùy trường hợp.

Bình luận (0)
NV
21 tháng 1 2024 lúc 21:13

Nếu thầy giáo nói điểm trung bình của lớp là 8.0, điều này có thể xảy ra nếu tổng số điểm của tất cả học sinh chia cho số lượng học sinh là 8. Điều này chỉ là điểm trung bình của toàn bộ lớp và có thể bị ảnh hưởng bởi các học sinh có điểm cao hoặc thấp.

Nếu điểm trung vị của lớp là 5, điều này có nghĩa là có một nửa số học sinh có điểm dưới 5 và một nửa có điểm trên 5. Điều này không nhất thiết phản ánh điểm trung bình của lớp.

Kết luận có thể rút ra từ thông tin này là lớp có sự biến động lớn trong điểm số, có thể có một số học sinh có điểm rất cao hoặc rất thấp, làm tăng giá trị của điểm trung bình. Đồng thời, điểm trung vị là 5 có thể là do một phần đáng kể của học sinh có điểm nằm trong khoảng 4 đến 6. 

Bình luận (0)
H24
Xem chi tiết
DN
Xem chi tiết
NB
27 tháng 8 2015 lúc 8:16

a) \(det=\left|\begin{matrix}1&-m\\m&1\end{matrix}\right|=1+m^2\ne0\) với mọi m => Hệ phương trình bậc nhất hai ẩn luôn có nghiệm

b) Ta có:

x0 - my0 = 2 - 4m         

mx0 + y0 = 3m + 1       

Hay là:

    x0 - 2 =  m (y0 - 4)         

    y0 - 1 = m (3 - x0)       

=> Chia hai vế cho nhau ta được

\(\frac{x_0-2}{y_0-1}=\frac{y_0-4}{3-x_0}\)

=> (x0 - 2)(3 - x0) = (y0 - 4)(y0 - 1)

=> -x02 + 5x0 - 6 = y02 - 5y0 + 4

=> x02 + y02 - 5(x0 + y0) = -10

ĐPCM

 

Bình luận (0)
TT
Xem chi tiết
ZQ
14 tháng 4 2015 lúc 22:24

Hai pt trừ cho nhau sau đó khai triển bằng  dùng hằng đẳng thức được pt tích sau đó dùng phép thế.

Bình luận (0)
NQ
21 tháng 4 2015 lúc 22:33

đây là hệ pt đối xứng loại 2. có cách giải mà

 

Bình luận (0)
BA
Xem chi tiết
TN
Xem chi tiết
HL
11 tháng 6 2015 lúc 14:52

Kết bạn nha !

Bình luận (0)
MV
Xem chi tiết
H24
1 tháng 7 2015 lúc 9:08

1) <=> 1 - sin2x + sin x + 1 = 0 

<=> - sin2x + sin x = 0 <=> sinx.(1 - sin x) = 0 <=> sin x = 0 hoặc sin x = 1

+) sin x = 0 <=> x = k\(\pi\)

+) sin x = 1 <=> x = \(\frac{\pi}{2}+k2\pi\)

2) <=> 2cos x - 2(2cos2 x - 1) = 1 <=> -4cos2 x + 2cos x + 1 = 0 

\(\Delta\)' = 5 => cosx = \(\frac{-1+\sqrt{5}}{-4}\) (Thỏa mãn) hoặc cosx =  \(\frac{-1-\sqrt{5}}{-4}=\frac{\sqrt{5}+1}{4}\)(Thỏa mãn)

cosx = \(\frac{-1+\sqrt{5}}{-4}\) <=> x = \(\pm\) arccos \(\frac{-1+\sqrt{5}}{-4}\) + k2\(\pi\)

cosx =  \(\frac{\sqrt{5}+1}{4}\) <=> x =\(\pm\) arccos \(\frac{\sqrt{5}+1}{4}\) +  k2\(\pi\)

Vậy....3) chia cả 2 vế cho 2 ta được:\(\frac{1}{2}\sin x-\frac{\sqrt{3}}{2}\cos x=\frac{1}{2}\) <=> \(\cos\frac{\pi}{3}\sin x\sin-\sin\frac{\pi}{3}\cos x=\sin\frac{\pi}{6}\Leftrightarrow\sin\left(x-\frac{\pi}{3}\right)=\sin\frac{\pi}{6}\)<=> \(x-\frac{\pi}{3}=\frac{\pi}{6}+k2\pi\) hoặc \(x-\frac{\pi}{3}=\frac{5\pi}{6}+k2\pi\)<=> \(x=\frac{\pi}{2}+k2\pi\) hoặc \(x=\frac{7\pi}{6}+k2\pi\)Vậy.... 
Bình luận (1)
H24
1 tháng 7 2015 lúc 10:28

1)  Có: m4 - m2 + 1 = (m2 - \(\frac{1}{2}\))2 + \(\frac{3}{4}\) > 0 với mọi m

|x2 - 1| = m4 - m2 + 1   

<=> x2 - 1 = m4 - m2 + 1    (1)  hoặc x2 - 1 = - ( m4 - m2 + 1 )    (2)

Rõ ràng : nếu x1 là nghiệm của (1) thì x1 không là nghiệm của (2)

Để pt đã cho 4 nghiệm phân biệt <=> pt (1) và (2) đều có 2 nghiệm phân  biệt

(1) <=> x2 = m4 - m2 + 2 > 0 với mọi m => (1) luôn có 2 nghiệm phân biệt

(2) <=> x2 = - m4 + m2 . Pt có 2 nghiệm phân biệt <=> m2 - m4 > 0 <=> m2.(1 - m2) > 0 

<=> m \(\ne\) 0 và 1 - m2 > 0 

<=> m \(\ne\) 0  và -1 < m < 1

Vậy với  m \(\ne\) 0  và -1 < m < 1 thì pt đã cho có 4 nghiệm pb

Bình luận (0)
H24
Xem chi tiết
VM
26 tháng 6 2015 lúc 10:53

1. \(\sin^2x+\sin2x=3\cos^2x\Leftrightarrow\sin^2x+2\sin x\cos x-3\cos^2x=0\Leftrightarrow4\sin^2x+2\sin x\cos x-3=0\)

Vì \(\cos x=0\) không phải là nghiệm của phương trình, nên chia 2 vế pt cho \(\cos x\), ta đc:

\(4\tan^2x+2\tan x-\frac{3}{\cos^2x}=0\Leftrightarrow4\tan^2x+2\tan x-3\left(1+\tan^2x\right)=0\Leftrightarrow\tan^2x+2\tan x-3=0\)

Suy ra: \(\begin{matrix}\tan x=1\\\tan x=-3\end{matrix}\) suy ra x.

 

Bình luận (0)
H24
1 tháng 7 2015 lúc 3:30

b) \(\Leftrightarrow\sqrt{2}\sin\left(x+\frac{\pi}{4}\right)=\sqrt{2}\sin2x\Leftrightarrow\sin\left(x+\frac{\pi}{4}\right)=\sin2x\Leftrightarrow\begin{cases}x+\frac{\pi}{4}=2x+k2\pi\\x+\frac{\pi}{4}=\pi-2x+k2\pi\end{cases}\)

\(\Leftrightarrow\begin{cases}x=\frac{\pi}{4}-k2\pi\\x=\frac{\pi}{4}+\frac{k2\pi}{3}\end{cases}\)

Vậy ....

Bình luận (0)
H24
1 tháng 7 2015 lúc 9:12

Chỗ Viết các nghiệm: Sửa lại : dùng dấu  ngoặc vuông thay cho ngoặc nhọn

Bình luận (0)
NT
Xem chi tiết
H24
Xem chi tiết
TH
28 tháng 6 2015 lúc 23:00

Đặt \(t=e^x,t>0\)

Phương trình trở thành: \(t^2-\left(e+1\right)t+e=0\)

 \(\Leftrightarrow\left(t-1\right)\left(t-e\right)=0\)

\(\Leftrightarrow t=1;t=e\)

\(t=1\Rightarrow e^x=1\Leftrightarrow x=0\)

+\(t=e\Rightarrow e^x=e\Leftrightarrow x=1\)

Vậy phương trình có nghiệm là x = 0 hoặc x = 1

 

Bình luận (0)